In order to achieve the high efficiency machining of titanium, the cutting force model is verified through the cutting experimental platform in machining cant and curved surface with ball end milling. And then the influence of cutting parameters and surface curvature on cutting force and tool wear are investigated. Finally, the prediction model of tool wear is established based on the orthogonal test and the least square method. This study proposes that the tool wear and each tooth feeding have a major impact on cutting force and that the convex surface from a small curvature to larger and the concave surface from a large curvature to smaller can effectively improve the life of tool in machining curved surface.
The paper presented a method of designing grooves of turning insert with 3D complex groove; and deduced equation calculating the width of the grooves using condition equation of the chip breaking, the parameters included in the equation was taken place by equivalent ones. And the grooves width is computed by MATLAB, and then the curve of the groove is fitted. The width can be used to create model of the turning inserts with 3D complex groove by Pro/Engineer, and the model can be imported in ANSYS soft to simulate turning process and analysis groove performance. All this work provides a base for the groove design and optimization
The flow stress change of 3Cr1Mo0.25V steel was researched in this paper through hot compression tests performed in a temperature range from 800 to 900oC and with a strain rate variation from 0.01 to 10s-1. Flow stress constitutive equation was constructed according to true stress-strain curves of 3Cr1Mo0.25V steel. Results indicate that the dynamic recovery is the dynamic softening mechanism of 3Cr1Mo0.25V steel. The flow stress increases with increasing strain rates and decreases with increasing temperature. The rheological behavior of 3Cr1Mo0.25V steel can be characterized by the parameter of Zener-Hollomon in a high temperature range. As for 3Cr1Mo0.25V steel, the activation energy of Q evaluated by the linear regression is about 142.9 kJ/mol.
Considering the problems of the current cutting tools, such as wide varieties, low management efficiency, high cost and selection difficulty, this paper builds a cutting tools total life cycle management system model, by using the total life cycle management concept the total life cycle management of the milling cutters from purchasing to the use and discarding is realized. In this paper, through researching on cutters selection law, rules for milling cutters selection is made and intelligent cutters selection system is established with rule reasoning method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.