SUMMARYThe reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here, we use genetic lineage-tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became bi-nucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast activating peptide, Thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes.
SUMMARY
Human diseases are often caused by loss of somatic cells incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo, lineage tracing revealed that 15–20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-β and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that had terminally exited the cell cycle.
Summary
A ketogenic diet (KD) recapitulates certain metabolic aspects of dietary
restriction such as reliance on fatty acid metabolism and production of ketone
bodies. We investigated whether KD might, like dietary restriction, affect
longevity and healthspan in C57BL/6 male mice. We find that an isoprotein KD,
fed on alternate weeks to prevent obesity (Cyclic KD), reduces mid-life
mortality but does not affect maximum lifespan. A non-ketogenic high-fat diet
(HF) fed similarly may have an intermediate effect on mortality. Cyclic KD
improves memory performance in old age, while modestly improving composite
healthspan measures. Gene expression analysis identifies down-regulation of
insulin, TOR, and fatty acid synthesis pathways as mechanisms common to KD and
HF. However, up-regulation of PPARα target genes is unique to KD,
consistent across tissues, and preserved in old age. In all, we show that a
non-obesogenic ketogenic diet improves survival, memory, and healthspan in aging
mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.