This paper proposed a hybrid intelligent process model, based on finite-element method (FEM) and Gaussian process regression (GPR), for electrical discharge machining (EDM) process. A model of single-spark EDM process has been constructed based on FEM method, considering the latent heat, variable heat distribution coefficient of cathode (f c ), and plasma flushing efficiency (PFE), to predict material removal rate (MRR) and surface roughness (Ra). This model was validated using reported analytical and experimental results. Then, a GPR model was proposed to establish relationship between input process parameters (pulse current, pulse duration, and discharge voltage) and the process responses (MRR and Ra) for EDM process. The GPR model was trained, tested, and tuned using the
Flexible tactile sensors that imitate the skin tactile system have attracted extensive research interest due to their potential applications in medical diagnosis, intelligent robots and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.