The study of carbon nanostructures is a highly topical branch of bionanotechnology because of their potential application in biomedicine. Carbon nanotubes (CNTs) are known for their ability to kill tumor cells causing hyperthermia shock and can be used in photothermal therapy respectively. Also chemically modified CNTs can be used for drug delivery. The needle-like shape of CNTs allows them to penetrate into the cell plasma membrane without killing the cell. C 60 fullerenes are regarded as valuable nanocarriers for different hydrophobic molecules as well as potential antiviral agents or photosensitizers.In our previous studies we have demonstrated that all types of carbon nanoparticles cause externalization of phosphatidylserine (PS) from the inner to the outer layer of the cell membrane in the small local patches (points of contact), leaving the other parts of plasma membrane PS-negative. In the current work there were studied the interactions of pristine C 60 fullerenes and different types of CNTs with human blood cells (erythrocytes and Jurkat T-cells). We have shown, that carbon nanoparticles do not have any hemolytic effects, if judged by the dynamics of acidic hemolysis, although they are capable of permeabilizating the cells and facilitating the internalization of propidium iodide into the nuclei.
Biochemical indices of blood and tissue of the gastrocnemius muscle chronically alcoholized (for 3, 6 and 9 months) rats were studied. С60 fullerene aqueous solution (C60FAS) was administered orally as a pharmacological agent at a dose of 1 mg/kg daily throughout the experiment in a three routes: 1 h before alcohol intake (preventive regimen), together with alcohol (therapeutic regimen I) and 1 h after alcohol intake (therapeutic regimen II). Creatine phosphokinase (CPK), lactate dehydrogenase (LDH), catalase, superoxide dismutase, glutathione peroxidase (GPx) activity and the level of creatinine, lactate, hydrogen peroxide, reduced glutathione were estimated with clinical diagnostic kits. A pronounced upward trend in creatinine and lactate content, CPK and LDH activity with increasing degree of alcoholic myopathy during experiment was detected. Administration of C60FAS was shown to reduce the biochemical indices of muscle injury and to reduce oxidative processes by maintaining the balance between pro-oxidant and antioxidant systems. The maximum positive effect was observed when C60FAS was administered together with alcohol (therapeutic regimen I). The results indicate on C60 fullerene ability to correct the pathological condition of the muscular system arising from alcohol intoxication. Keywords: alcohol intoxication, antioxidant system, C60 fullerene, creatine phosphokinase, gastrocnemius muscle, lactate dehydrogenase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.