Despite of its widely uses in various clinical applications, the titanium-based material still faces different challenges, such as hemocompatibility and anti-biofouling characteristics required in various situations. The objective of this investigation was to develop a novel surface modification strategy for titanium-based material to improve the platelet compatibility that is important in rigorous blood-contacting cardiovascular applications. In this work, a series of copolymers, which composed of novel 6-acryloyloxy hexyl phosphonic acid (AcrHPA) and sulfobetaine methacrylate (SBMA) was synthesized. The phosphonic acid group in these copolymers can impart covalent binding to the titanium substrate while the zwitterionic sulfobetaine functionality is considered being able to reduce the platelet adhesion and activation on the modified titanium substrate. NMR analyses suggested that copolymerization reaction is likely not an ideal statistical reaction but to add the monomers in a random order. Studies have shown that the composition of the monomers affected the surface characteristics and platelet compatibility of these covalent-bound AcrHPA-SBMA copolymers on titanium substrate. Contact angle analysis has shown the addition of SBMA can increase surface hydrophilicity of the spun-coated copolymers. In addition, AFM analyses have revealed that the surface roughness of the spun-coated copolymer layer were varied with the ratio of AcrHPA and SBMA. The most platelet compatible surface was noted on the one modified by the highest amount of SBMA added (i.e. 70 mol%) in copolymerization. In summary, the surface modification scheme presented here would be of potential as well as manufacturing process applicable for future development in blood-contacting titanium-based biomedical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.