Numerous sensors can obtain images or point cloud data on land, however, the rapid attenuation of electromagnetic signals and the lack of light in water have been observed to restrict sensing functions. This study expands the utilization of two- and three-dimensional detection technologies in underwater applications to detect abandoned tires. A three-dimensional acoustic sensor, the BV5000, is used in this study to collect underwater point cloud data. Some pre-processing steps are proposed to remove noise and the seabed from raw data. Point clouds are then processed to obtain two data types: a 2D image and a 3D point cloud. Deep learning methods with different dimensions are used to train the models. In the two-dimensional method, the point cloud is transferred into a bird’s eye view image. The Faster R-CNN and YOLOv3 network architectures are used to detect tires. Meanwhile, in the three-dimensional method, the point cloud associated with a tire is cut out from the raw data and is used as training data. The PointNet and PointConv network architectures are then used for tire classification. The results show that both approaches provide good accuracy.
With the rapid development of unmanned surfaces and underwater vehicles, fault diagnoses for underwater thrusters are important to prevent sudden damage, which can cause huge losses. The propeller causes the most common type of thruster damage. Thus, it is important to monitor the propeller’s health reliably. This study proposes a fault diagnosis method for underwater thruster propellers. A deep convolutional neural network was proposed to monitor propeller conditions. A Hall element and hydrophone were used to obtain the current signal from the thruster and the sound signal in water, respectively. These raw data were fast Fourier transformed from the time domain to the frequency domain and used as the input to the neural network. The output of the neural network indicated the propeller’s health conditions. This study demonstrated the results of a single signal and the fusion of multiple signals in a neural network. The results showed that the multi-signal input had a higher accuracy than the one-signal input. With multi-signal inputs, training two types of signals with a separated neural network and then merging them at the end yielded the best results (99.88%), as compared to training two types of signals with a single neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.