Strain engineering is a promising method to manipulate the electronic and optical properties of two-dimensional (2D) materials. However, with weak van der Waals interaction, severe slippage between 2D material and substrate could dominate the bending or stretching processes, leading to inefficiency strain transfer. To overcome this limitation, we report a simple strain engineering method by encapsulating the monolayer 2D material in the flexible PVA substrate through spin-coating approach. The strong interaction force between spin-coated PVA and 2D material ensures the mechanical strain can be effectively transferred with negligible slippage or decoupling. By applying uniaxial strain to monolayer MoS 2 , we observe a higher bandgap modulation up to~300 meV and a highest modulation rate of~136 meV/%, which is approximate two times improvement compared to previous results achieved. Moreover, this simple strategy could be well extended to other 2D materials such as WS 2 or WSe 2 , leading to enhanced bandgap modulation.
The in-depth understanding of ions' generation and movement inside all-inorganic perovskite quantum dots (CsPbBr QDs), which may lead to a paradigm to break through the conventional von Neumann bottleneck, is strictly limited. Here, it is shown that formation and annihilation of metal conductive filaments and Br ion vacancy filaments driven by an external electric field and light irradiation can lead to pronounced resistive-switching effects. Verified by field-emission scanning electron microscopy as well as energy-dispersive X-ray spectroscopy analysis, the resistive switching behavior of CsPbBr QD-based photonic resistive random-access memory (RRAM) is initiated by the electrochemical metallization and valance change. By coupling CsPbBr QD-based RRAM with a p-channel transistor, the novel application of an RRAM-gate field-effect transistor presenting analogous functions of flash memory is further demonstrated. These results may accelerate the technological deployment of all-inorganic perovskite QD-based photonic resistive memory for successful logic application.
Crystalline porous metal–organic frameworks (MOFs) with nanometer‐sized void spaces, large surface areas and ordered reticular motifs have offered a platform for achieving disruptive successes in divisional fields. Great progress in exploring the linear and nonlinear optical features of MOFs has been achieved, yet third‐order optical nonlinearities in two‐dimensional (2D) MOFs have rarely been studied. Here, a broadband nonlinear optical amplitude modification and phase shift are demonstrated in a few‐layer nickel‐p‐benzenedicarboxylic acid MOF (Ni‐MOF). The calculated bandgap of Ni‐MOF decreases from 3.12 eV to 0.85 eV as the doping of Ni ions increases, indicating the ability of this material to be used for optical amplitude modulation from the visible to the near‐infrared region, which is experimentally confirmed via a Z‐scan technique. The determined third‐order optical nonlinearities resemble those of other low‐dimensional nonlinear optical materials, suggesting the wide potential of Ni‐MOF for application in optoelectronics. As an example, a Ni‐MOF‐based saturable absorber was implemented into fiber resonators to demonstrate its broadband mode‐locking operations. A femtosecond laser pulse was readily obtained in the telecommunication wavelength window in an integrated all‐fiber resonator. Considering the chemical compatibility and rich variability, these primary investigations pave the way towards advanced photonics based on multifeature MOF materials.
Atomically ordered intermetallic nanoparticles exhibit improved catalytic activity and durability relative to random alloy counterparts. However, conventional methods with time‐consuming and high‐temperature syntheses only have rudimentary capability in controlling the structure of intermetallic nanoparticles, hindering advances of intermetallic nanocatalysts. We report a template‐directed strategy for rapid synthesis of Pd‐based (PdM, M=Pb, Sn and Cd) ultrathin porous intermetallic nanosheets (UPINs) with tunable sizes. This strategy uses preformed seeds, which act as the template to control the deposition of foreign atoms and the subsequent interatomic diffusion. Using the oxygen reduction reaction (ORR) as a model reaction, the as‐synthesized Pd3Pb UPINs exhibit superior activity, durability, and methanol tolerance. The favored geometrical structure and interatomic interaction between Pd and Pb in Pd3Pb UPINs are concluded to account for the enhanced ORR performance.
Phototunable biomaterial‐based resistive memory devices and understanding of their underlying switching mechanisms may pave a way toward new paradigm of smart and green electronics. Here, resistive switching behavior of photonic biomemory based on a novel structure of metal anode/carbon dots (CDs)‐silk protein/indium tin oxide is systematically investigated, with Al, Au, and Ag anodes as case studies. The charge trapping/detrapping and metal filaments formation/rupture are observed by in situ Kelvin probe force microscopy investigations and scanning electron microscopy and energy‐dispersive spectroscopy microanalysis, which demonstrates that the resistive switching behavior of Al, Au anode‐based device are related to the space‐charge‐limited‐conduction, while electrochemical metallization is the main mechanism for resistive transitions of Ag anode‐based devices. Incorporation of CDs with light‐adjustable charge trapping capacity is found to be responsible for phototunable resistive switching properties of CDs‐based resistive random access memory by performing the ultraviolet light illumination studies on as‐fabricated devices. The synergistic effect of photovoltaics and photogating can effectively enhance the internal electrical field to reduce the switching voltage. This demonstration provides a practical route for next‐generation biocompatible electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.