Solid polymer electrolytes (SPEs) have attracted considerable attention due to the rapid development of the need for more safety and powerful lithium ion batteries. The prime requirements of solid polymer electrolytes are high ion conductivity, low glass transition temperature, excellent solubility to the conductive lithium salt, and good interface stability against Li anode, which makes PEO and its derivatives potential candidate polymer matrixes. This review mainly encompasses on the synthetic development of PEO-based SPEs (PSPEs), and the potential application of the resulting PSPEs for high performance, all-solid-state lithium ion batteries.
Stable water-suspendable Cu+-doped ZnS nanocrystals (NCs) have been synthesized with mercaptopropionic acid (MPA) as a capping molecule. The nanocrystals have been characterized using a combination of experimental techniques including UV-vis and photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma (ICP), and extended X-ray absorption fine structure (EXAFS). The UV-vis electronic absorption spectrum shows an excitonic peak at 310 nm, characteristic of quantum-confined ZnS NCs. This excitonic peak does not change noticeably with Cu+ doping. XRD confirms the formation of ZnS nanocrystals, and the average size of the NCs has been determined to be around 6 nm by TEM. The incorporation of Cu+ into the ZnS is manifested as a substantial red-shift of the emission band in the PL spectra upon addition of Cu2+ that was reduced into Cu+ during the synthesis reaction. EXAFS data were obtained to confirm copper doping as well as determine the local structure about Cu+ and Zn2+ in the NCs. Fitting to the EXAFS data for Cu+ suggests that most Cu+ ions are located near the surface within the ZnS NCs and that a significant fraction may be in the form of CuS as found in bulk material. These combined optical and structural studies have provided important new insight into the relevant electronic energy levels and their correlation to the optical and structural properties of ZnS:Cu,Cl NCs. This has important implications in potential applications of this phosphor material for solid state lighting, imaging, and other photonic devices.
Uranium and plutonium's 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials.
A composite electrode composed of Fe3O4 microspheres encapsulated in hollow graphene shells exhibits high electrochemical performance when used as an anode in a lithium ion battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.