Ground-air heat exchangers have become an important topic in recent years due to their contributions to the market growth of the ground source heat pump industry. This paper provides a comprehensive study and recommends suggestions on the selection process of a suitable pipe for an air-to-water heat pump (AWHP). Parametric studies including material, turbulent plate quantity, and pipe type were performed to identify an optimal pipe design for high-performance AWHP. Both numerical and experimental studies were carried out to validate current pipe models. Overall, there was good agreement between the numerical model and experimental results. It was determined that a spirally corrugated pipe exhibited excellent thermal power generation with little compromising pressure drop. Finally, a pipe selection example was demonstrated as a design guideline to size an optimal pipe for AWHP application.
Photovoltaic-Thermal (PVT) is a type of technology that generates electricity and heat simultaneously at the point of use. The generated electricity could be used on site or exported to the grid while the thermal output could be utilized for space and water heating. There is a lot of research for solar air heating with experiment or CFD (Computational Fluid Dynamics), but CFD has the disadvantage that it would indicate impractical results. In this paper, a numerical PVT baseline model was developed and validated with Separate Effect Test (SET) data to increase reliability. The numerical study was conducted by considering the effect of baffle lengths and baffle slopes on outlet temperature, total heat transfer and pressure drop inside PVT air module. An optimum PVT baffle length and slope design were suggested. The baseline numerical PVT model agreed well with the test data set as indicated by 1.25% error for inlet–outlet temperatures difference. The sensitivity study was conducted by changing the PVT baffle length and slope. The optimum baffle design was concerned with both heat transfer and pressure drop at the same time with ratio. The baffle length should be kept under 150 mm and baffle slope should be greater than 30° to achieve better air mixing in PVT air channel and unit heat transfer compared to baffle slope less than 30°.
This paper analyses the effect of façade curvature with varying the surrounding building heights on pedestrian-level wind speeds and comfort for walking, using computational fluid dynamics. The case study focuses on 20 Fenchurch Street site in London as several complaints have risen in relation to high wind speeds, the cause of which is not thoroughly understood. The results of the simulation revealed that although the increase of surrounding building heights reduces overall pedestrian-level wind speeds for both curved existing and cuboid building, façade curvature impacts differently on winds, compared to the cuboid. Isolated curved and cuboid building would perform similarly with the exception of the northwest corner. However, introducing the existing surrounding buildings, the curved façade geometry would create larger area of walking discomfort compared to the cuboid geometry. When the height of the surrounding buildings is increased, both buildings would perform similarly with minor aerodynamic advantage to the curved-façade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.