OBJECTIVE: We aimed at studying the role of the most deregulated miR-99a, identifying its downstream targets, and exploring the clinical potential of miR-99a and its target(s) in oral cancer. SUBJECTS AND METHODS: Following confirmation of miR-99a deregulation in nine oral lines and 26 pairwise clinical specimens, miR-99a-manipulated oral cancer cells were subjected to cell proliferation, migration, invasion, and in vivo murine metastasis assays. We characterized putative miR-99a target(s) using luciferase reporter assays and genetic manipulation. The inverse relation of miR-99a and its target(s) was examined in clinical specimens using real-time PCR and Western blot analysis. RESULTS: MiR-99a down-regulation was confirmed both in tested oral cancer cell lines and clinical specimens. Ectopic miR-99a expression inhibited oral cancer cell migration and invasion. Anti-miR-99a, silencing miR-99a functions, had the opposite effect. Myotubularin-related protein 3 (MTMR3) with one evolutionarily conserved seed region in the 3′-untranslated region was a novel miR-99a target. Depleting MTMR3 expression significantly reduced cell proliferation, migration, or invasion. There was an inverse expression of miR-99a and MTMR3 protein in oral cancer lines and clinical specimens. CONCLUSION: miR-99a repressed oral cancer cell migration and invasion partly through decreasing MTMR3 expression. MTMR3 may serve as a therapeutic target for oral cancer treatment. Oral Diseases (2014) 20, e65-e75
Early dissemination is a unique characteristic and a detrimental process of pancreatic ductal adenocarcinoma (PDAC); however, the underlying mechanism remains largely unknown. Here, we investigate the role of dual-specificity phosphatase-2 (DUSP2)-vascular endothelial growth factor-C (VEGF-C) axis in mediating PDAC lymphangiogenesis and lymphovascular invasion. Expression of DUSP2 is greatly suppressed in PDAC, which results in increased aberrant expression of extracellular vesicle (EV)-associated VEGF-C secretion. EV-VEGF-C exerts paracrine effects on lymphatic endothelial cells and autocrine effects on cancer cells, resulting in the lymphovascular invasion of cancer cells. Tissue-specific knockout of Dusp2 in mouse pancreas recapitulates PDAC phenotype and lymphovascular invasion. Mechanistically, loss-of-DUSP2 enhances proprotein convertase activity and vesicle trafficking to promote the release of the mature form of EV-VEGF-C. Collectively, these findings represent a conceptual advance in understanding pancreatic cancer lymphovascular invasion and suggest that loss-of-DUSP2-mediated VEGF-C processing may play important roles in early dissemination of pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.