The discriminator base N73 is a key identity element of tRNA. In eukaryotes, N73 is an "A" in cytoplasmic tRNA and a "C" in mitochondrial tRNA. We present evidence herein that yeast histidyl-tRNA synthetase (HisRS) recognizes both A73 and C73, but somewhat prefers A73 even within the context of mitochondrial tRNA. In contrast, humans possess two distinct yet closely related HisRS homologues, with one encoding the cytoplasmic form (with an extra N-terminal WHEP domain) and the other encoding its mitochondrial counterpart (with an extra N-terminal mitochondrial targeting signal). Despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Moreover, only the mitochondrial form recognized the anticodon as a strong identity element. Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNA isoacceptors conveniently switched their enzyme preferences. Similarly, swapping seven residues in the active site between the two isoforms readily switched their N73 preferences. This study suggests that the human HisRS genes, while descending from a common ancestor with dual function for both types of tRNA, have acquired highly specialized tRNA recognition properties through evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.