Life-threatening thrombocytopenia and bleeding, common side effects of clinically available α IIb β 3 antagonists, are associated with the induction of ligand-induced integrin conformational changes and exposure of ligand-induced binding sites (LIBSs). To address this issue, we examined intrinsic mechanisms and structure-activity relationships of purified disintegrins, from Protobothrops flavoviridis venom (i.e., Trimeresurus flavoviridis), TFV-1 and TFV-3 with distinctly different pro-hemorrhagic tendencies. TFV-1 with a different α IIb β 3 binding epitope from that of TFV-3 and chimeric 7E3 Fab, i.e., Abciximab, decelerates α IIb β 3 ligation without causing a conformational change in α IIb β 3 , as determined with the LIBS antibody, AP5, and the mimetic, drug-dependent antibody (DDAb), AP2, an inhibitory monoclonal antibody raised against α IIb β 3 . Consistent with their different binding epitopes, a combination of TFV-1 and AP2 did not induce FcγRIIa-mediated activation of the ITAM-Syk-PLCγ2 pathway and platelet aggregation, in contrast to the clinical antithrombotics, abciximab, eptifibatide, and disintegrin TFV-3. Furthermore, TFV-1 selectively inhibits Gα 13 -mediated platelet aggregation without affecting talin-driven clot firmness, which is responsible for physiological hemostatic processes. At equally efficacious antithrombotic dosages, TFV-1 caused neither severe thrombocytopenia nor bleeding in FcγRIIa-transgenic mice. Likewise, it did not induce hypocoagulation in human whole blood in the rotational thromboelastometry (ROTEM) assay used in perioperative situations. In contrast, TFV-3 and eptifibatide exhibited all of these hemostatic effects. Thus, the α IIb β 3 antagonist, TFV-1, efficaciously prevents arterial thrombosis without adversely affecting hemostasis. Keywords: arterial thrombosis; antiplatelet agent; integrin α IIb β 3 ; bleeding side effect; snake venom proteins; disintegrins Key Contribution: Current α IIb β 3 antagonists are efficacious anti-thrombotics, but have significant adverse bleeding effects. This study clarifies a pathologically intrinsic mechanism in drug-induced thrombocytopenia and identifies a new candidate that may lead to development of safer anti-thrombotics with significantly reduced bleeding risk.
Polymer polyethylene glycol (PEG), or PEGylation of polypeptides improves protein drug stability by decrease degradation and reduces renal clearance. To produce a pharmaceutical disintegrin derivative, the N-terminal PEGylation technique was used to modify the disintegrin derivative [KGDRR]trimucrin for favorable safety and pharmacokinetic profiles and antithrombotic efficacy. We compared intact [KGDRR]trimucrin (RR) and PEGylated KGDRR (PEG-RR) by in vitro and in vivo systems for their antithrombotic activities. The activity of platelet aggregation inhibition and the bleeding tendency side effect were also investigated. PEG-RR exhibited optimal potency in inhibiting platelet aggregation of human/mouse platelet-rich plasma activated by collagen or ADP with a lower IC50 than the intact derivative RR. In the illumination-induced mesenteric venous thrombosis model, RR and PEG-RR efficaciously prevented occlusive thrombosis in a dose-dependent manner. In rotational thromboelastometry assay, there was no effect of PEG-RR in human whole blood coagulation even given at a higher concentration (30 μg/mL), while RR slightly prolonged clotting time. However, RR and PEG-RR were not associated with severe thrombocytopenia or bleeding in FcγRIIa-transgenic mice at equally efficacious antithrombotic dosages. We also found the in vivo half-life of PEGylation was longer than RR (RR: 15.65 h vs. PEG-RR: 20.45 h). In conclusion, injectable PEG-RR with prolonged half-life and decreased bleeding risk is a safer anti-thrombotic agent for long-acting treatment of thrombus diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.