This study developed a solvent merging/particulate leaching method for preparing three-dimensional porous scaffolds. Poly(L-lactic-co-glycolic acid) (PLGA) and sodium chloride particles were dry-mixed and cast into a special mold, through which a liquid could pass due to a pressure difference. An organic solvent was then poured into the mold to dissolve and merge the PLGA particles under negative pressure. A nonsolvent was conducted into the PLGA/salt composite to solidify and precipitate the merged PLGA matrix. Finally, a large amount of water was passed through the mold to leach out the salt particles so as to create a porous structure. The results revealed that a highly porous three-dimensional scaffold (>85 vol %) with a well interconnected porous structure could be achieved by this process. Porosity and the pore size of the scaffold were controlled using the ratio and the particle size of the added salt particles. A larger-volume scaffold was produced using a larger mold. This work provides a continuous and simple procedure for fabricating a bulk three-dimensional porous scaffold for tissue engineering.
Hydroxylated glycerol dialkyl glycerol tetraethers (hydroxy-GDGTs) were detected in marine sediments of diverse depositional regimes and ages. Mass spectrometric evidence, complemented by information gleaned from two-dimensional (2D) 1 H-13 C nuclear magnetic resonance (NMR) spectroscopy on minute quantities of target analyte isolated from marine sediment, allowed us to identify one major compound as a monohydroxy-GDGT with acyclic biphytanyl moieties (OH-GDGT-0). NMR spectroscopic and mass spectrometric data indicate the presence of a tertiary hydroxyl group suggesting the compounds are the tetraether analogues of the widespread hydroxylated archaeol derivatives that have received great attention in geochemical studies of the last two decades. Three other related compounds were assigned as acyclic dihydroxy-GDGT (2OH-GDGT-0) and monohydroxy-GDGT with one (OH-GDGT-1) and two cyclopentane rings (OH-GDGT-2). Based on the identification of hydroxy-GDGT core lipids, a group of previously reported unknown intact polar lipids (IPLs), including the ubiquitously distributed H341-GDGT (Lipp J. S. and Hinrichs K. -U. (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816-6833), and its analogues were tentatively identified as glycosidic hydroxy-GDGTs. In addition to marine sediments, we also detected hydroxy-GDGTs in a culture of Methanothermococcus thermolithotrophicus. Given the previous finding of the putative polar precursor H341-GDGT in the planktonic marine crenarchaeon Nitrosopumilus maritimus, these compounds are synthesized by representatives of both crenand euryarchaeota. The ubiquitous distribution and apparent substantial abundance of hydroxy-GDGT core lipids in marine sediments (up to 8% of total isoprenoid core GDGTs) point to their potential as proxies.
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H 2 and CO 2 , which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H 2 -utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H 2 -utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.
Autologous chondrocyte implantation (ACI) has been recently used to treat cartilage defects. Partly because of the success of mosaicplasty, a procedure that involves the implantation of native osteochondral plugs, it is of potential significance to consider the application of ACI in the form of biphasic osteochondral composites. To test the clinical applicability of such composite construct, we repaired osteochondral defect with ACI at low cell-seeding density on a biphasic scaffold, and combined graft harvest and implantation in a single surgery. We fabricated a biphasic cylindrical porous plug of DL-poly-lactide-co-glycolide, with its lower body impregnated with b-tricalcium phosphate as the osseous phase. Osteochondral defects were surgically created at the weight-bearing surface of femoral condyles of Lee-Sung mini-pigs. Autologous chondrocytes isolated from the cartilage were seeded into the upper, chondral phase of the plug, which was inserted by press-fitting to fill the defect. Defects treated with cell-free plugs served as control. Outcome of repair was examined 6 months after surgery. In the osseous phase, the biomaterial retained in the center and cancellous bone formed in the periphery, integrating well with native subchondral bone with extensive remodeling, as depicted on X-ray roentgenography by higher radiolucency. In the chondral phase, collagen type II immunohistochemistry and Safranin O histological staining showed hyaline cartilage regeneration in the experimental group, whereas only fibrous tissue formed in the control group. On the International Cartilage Repair Society Scale, the experimental group had higher mean scores in surface, matrix, cell distribution, and cell viability than control, but was comparable with the control group in subchondral bone and mineralization. Tensile stress-relaxation behavior determined by uni-axial indentation test revealed similar creep property between the surface of the experimental specimen and native cartilage, but not the control specimen. Implanted autologous chondrocytes could survive and could yield hyaline-like cartilage in vivo in the biphasic biomaterial construct. Pre-seeding of osteogenic cells did not appear to be necessary to regenerate subchondral bone. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.