We study an infinite-horizon discrete-time optimal stopping problem under non-exponential discounting. A new method, which we call the iterative approach, is developed to find subgame perfect Nash equilibria. When the discount function induces decreasing impatience, we establish the existence of an equilibrium through fixed-point iterations. Moreover, we show that there exists a unique optimal equilibrium, which generates larger values than any other equilibrium does at all times. To the best of our knowledge, this is the first time a dominating subgame perfect Nash equilibrium is shown to exist in the literature of time-inconsistency. MSC (2010): 49K21, 60J05, 91A13, 93E20.
Under non-exponential discounting, we develop a dynamic theory for stopping problems in continuous time. Our framework covers discount functions that induce decreasing impatience. Due to the inherent time inconsistency, we look for equilibrium stopping policies, formulated as fixed points of an operator. Under appropriate conditions, fixed-point iterations converge to equilibrium stopping policies. This iterative approach corresponds to the hierarchy of strategic reasoning in Game Theory, and provides "agent-specific" results: it assigns one specific equilibrium stopping policy to each agent according to her initial behavior. In particular, it leads to a precise mathematical connection between the naive behavior and the sophisticated one. Our theory is illustrated in a real options model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.