In this paper, we proposed the implementation of a two-dimensional omnidirectional and broadband acoustic absorber using graded index phononic crystals as the shell with an inner absorbing core. The phononic crystal was consisted of circular steel rod arranged as square lattice in air background. The plane wave expansion method was used to obtain the band diagram of the phononic crystal from which the effective refractive index could be computed. The radially distributed refractive index of the acoustic absorber was achieved by placing steel rods with spatially varying radii. The finite element method was employed in order to confirm the acoustic properties of the designed device. Numerical simulations illustrated that the acoustic waves were bent toward the central area by the outer shell and absorbed by the inner core of the implemented acoustic absorber. Furthermore, it was demonstrated that the implemented acoustic absorber could operate independent of the incident wave directions for a relative wide range of frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.