Among various modeling methods for DC-DC converters introduced in the past two decades, the state-space averaging (SSA) and the circuit averaging (CA) are the most general and popular exhibiting high accuracy. However, their deduction approaches are not entirely equivalent since they incorporate different averaging processes, thus yielding different small signal transfer functions even under identical operating conditions. Some research studies claimed that the improved SSA can obtain the highest accuracy among all the modeling methods, but this paper discovers and clearly verifies that this is not the case. In this paper, we first review and study these two modeling methods for various DC-DC converters operating in the discontinuous conduction mode (DCM). We also streamline the general model-deriving processes for DC-DC converters, and test and compare the accuracy of these two methods under various conditions. Finally, we provide a selection strategy for a high-accuracy modeling method for different DC-DC converters operating in DCM and verified by simulations, which revealed necessary and beneficial for designing a more accurate DCM closed-loop controller for DC-DC converters, thus achieving better stability and transient response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.