The isomorphism problem for finite groups of odd order and nilpotency class 2 with cyclic centre will be solved using some results of Brady [1], [2]. Since a finite nilpotent group is the direct product of its Sylow subgroups, we only need to consider finite q-groups where q is a prime. It has been shown in [1] and [2] that a finite q-group of nilpotency class 2 with cyclic centre is a central product either of two-generator subgroups with cyclic centre or of two-generator subgroups with cyclic centre and a cyclic subgroup, and that the q-groups of class 2 on two generators with cyclic centre comprise the following list: , and if q = 2 we have as well .
In conjunction with an earlier work by Leong (1974a), this paper completes the solution of the isomorphism problem for finite nilpotent groups of class two with cyclic centre. A canonical decomposition for 2-groups of such type is obtained and proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.