BackgroundHemorrhage is a direct consequence of traumatic injury to the central nervous system and may cause innate immune reactions including cerebral Toll-like receptor (TLR) 4 upregulation which usually leads to poor outcome in the traumatic brain injury. In spinal cord injury (SCI), however, how hemorrhage induces innate immune reaction in spinal parenchyma remains unknown. The present study aimed to see whether blood component and/or other factor(s) induce TLR4 and microglia/macrophages involved innate immune reactions in the rat spinal cord after traumatic injury.MethodsUsing the compressive SCI model of the rat, hemorrhage in the spinal cord was identified by hematoxylin-eosin staining. Microglia/macrophage activation, TLR4 expression, and cell apoptosis were investigated by immunohistochemistry. Nuclear factor (NF)-κB p50 level of the two segments of the cord was detected by western blotting assay. With carbon powder injection, blood origination of the hematoma was explored. The blood-spinal cord barrier (BSCB) states of the lesion site and the hematoma were compared with immunohistochemistry and tannic acid-ferric chloride staining.ResultsHistological observation found blood accumulated in the center of compression lesion site (epicenter) and in the hematoma approximately 1.5 cm away from the epicenter. TLR4 expression, microglia//macrophage activation, and subsequent apoptosis in the area of far-away hematoma were late and weak in comparison to that in epicenter. In addition, TLR4 positive microglia/macrophages appeared to be phagocytotic in the far-away hematoma more obviously than that in the epicenter. Injected carbon powder indicated that accumulated blood of the far-away hematoma originated from the bleeding of the lesion epicenter, and the BSCB around the hematoma was not compromised in the early phase. Accordingly, at 3 days post injury, NF-κB p50 was upregulated based on the similar levels of blood component hemoglobin, and cell apoptosis was obvious in the epicenter but not in the far-away hematoma.ConclusionThese data suggest that besides blood component, BSCB compromise and the extent of tissue injury contribute more to TLR4 and microglia/macrophage responses to the spinal cord hemorrhage. Therefore, the innate immune environment is a necessary consideration for the SCI therapy targeting TLR4 and microglia/macrophages.
To determine the role of toll-like receptors (TLRs) myeloid differentiation factor 88 (MyD88) dependent pathway in the spinal cord secondary injury, compression injury was made at T8 segment of the spinal cord in adult male Sprague-Dawley rats. Shown by RT-PCR, TLR4 mRNA in the spinal cord was quickly elevated after compression injury. Intramedullary injection of MyD88 inhibitory peptide (MIP) resulted in significant improvement in locomotor function recovery at various time points after surgery. Meanwhile, injury area, p38 phosphorylation, and proinflammation cytokines in the injured spinal cord were significantly reduced in MIP-treated animals, compared with control peptide (CP) group. These data suggest that TLRs MyD88-dependent pathway may play an important role in the development of secondary spinal cord injury, and inhibition of this pathway at early time after primary injury could effectively protect cells from inflammation and apoptosis and therefore improve the functional recovery.
Shu-Xue-Tong (SXT) is a traditional Chinese drug widely used to ameliorate stagnation of blood flow, such as brain or myocardial infarction. Whether SXT may have therapeutic value for spinal cord injury (SCI), during which ischemia plays an important role in its pathology, remains to be elucidated. We hypothesized that SXT may promote SCI healing by improving spinal cord blood flow (SCBF), and a study was thus designed to explore this possibility. Twenty-five male Sprague-Dawley rats were used. SCI was induced by compression, and SXT was administrated 24 h postinjury for 14 successive days. The effects of SXT were assessed by means of laser-Doppler flowmetry, motor functional analysis (open-field walking and footprint analysis), and histological analysis (hematoxylin-eosin and thionin staining and NeuN immunohistochemistry). SXT significantly promoted SCBF of the contused spinal cord and enhanced the recovery of motor function. Histological analysis indicated that the lesion size was reduced, the pathological changes were ameliorated, and more neurons were preserved. Based on these results we conclude that SXT can effectively improve SCI.
BackgroundOur past researches suggested that L. barbarum exhibits direct neuroprotective and immune regulatory effects on the central nervous system, which are highly related to the events involved in the spinal cord injury, but not yet been investigated. Immune responses play an important role in the development of the pathology after secondary injury, particularly the M1 and M2 types of macrophage, on which special emphasis was laid in this study.MethodsIn our previous studies L. barbarum was administrated orally from 7 days before the injury to ensure a stabilized concentration in the blood. For clinical application, L. barbarum can only be administered after the injury. Therefore, both pre-injury and post-injury administration protocols were compared. In vivo and in vitro studies were conducted and analyzed immunohistochemically, including Western blotting.ResultsThe lesion size in the pre-treated group was much larger than that in the post-treated group. To explain this difference, we first studied the effect of L. barbarum on astrocytes, which forms the glial scar encircling the lesion. L. barbarum did not significantly affect the astrocytes. Then we studied the effect of L. barbarum on microglia/macrophages, particularly the M1 and M2 polarization. After spinal cord injury, the deleterious M1 cells dominant the early period, whereas the beneficial M2 cells dominate later. We found that in the pre-treated group L. barbarum significantly enhanced the expression of M1 cells and suppressed that of M2 cells, while in the post-treated group LBP markedly promoted the activity of M2 cells. This explained the difference between the pre- and post-treated groups.ConclusionsLycium barbarum has been wildly accepted to have beneficial effects in various central nervous system diseases. Our finding of deleterious effect of LBP administered at early period of spinal cord injury, indicates that its application should be avoided. The substantial beneficial effect of LBP when administered at later stage has an important impact for clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.