Maintenance-free self-healing elastomers that switch their mechanical properties on demand would be extremely useful materials for improving the functionalities, safety, energy efficiency, and lifetimes of many kinds of products and devices. However, strength and stretchability are conflicting properties for elastomers because the inherent crosslinking density of a polymeric network is unchangeable. For example, heavily crosslinked elastomers are strong, but poorly stretchable. Here we report an ionically crosslinked polyisoprene elastomer in which the ionic moieties are continually hopping between ionic aggregates at room temperature. Thus, the network is dynamic. This elastomer spontaneously self-heals without the input of external energy or healing agents. Furthermore, it behaves like a strong elastic material under rapid deformation, but acts like a highly stretchable and viscoelastic material under slow deformation. Our ionic elastomer shows a variety of notable mechanical properties, including high fracture strength (≈7 MPa), good toughness (≈70 MJ m −3 ), and ultrastretchability (>13,400%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.