PRG4 (proteoglycan 4) has been identified as megakaryocyte stimulating factor and articular superficial zone protein. PRG4 has characteristic motifs including somatomedin B and hemopexin domains, a chondroitin sulfate-attachment site and mucin-like repeats. During a screen of genes implicated in ectopic ossification, we found a novel mouse gene highly homologous to human and bovine PRG4 genes. Here, we report isolation, characterization and mapping of the gene, Prg4 together with characterization of its human orthologue. Prg4 cDNA was 3,320 bp long, encoding a 1,054 amino-acid protein. Human and mouse PRG4 genes each consisting of 12 exons spanned 18 and 16 kb, respectively. Characteristic motifs were conserved across species; however, the mucin-like repeat regions were highly diverse in length between species with a tendency that larger animals had longer repeats. Expression of human and mouse PRG4 genes was similar and found not only in cartilage, but also in liver, heart, lung, and bone. Expression of the mouse gene increased with progression of ectopic ossification. Multiple tissue-specific splicing variants lacking some of the motifs were found in both human and mouse. Although a specific role in the articular joint has previously been reported, the presence of multi-functional motifs as well as unique expression and alternative splicing patterns suggest that PRG4 functions in several distinctive biological process including regulation of ossification.
OPLL (ossification of the posterior longitudinal ligament of the spine) is a common form of human myelopathy with a prevalence of as much as 4% in a variety of ethnic groups. To clarify the genetic factors that predispose to OPLL, we have studied ttw (tiptoe walking), a mouse model that presents ectopic ossification of the spinal ligaments similar to OPLL and have found that the ttw phenotype is caused by the nonsense mutation of the gene encoding nucleotide pyrophosphatase (NPPS), a membrane-bound glycoprotein thought to produce inorganic pyrophosphate, a major inhibitor of calcification and mineralization. To investigate a possible role of NPPS in the etiology of OPLL, we have examined its genetic variations in OPLL patients. A total of 323 OPLL patients was screened by means of polymerase chain reaction/single-strand conformation polymorphism analysis covering all the exons and their surrounding introns, plus about 1.5-kb of the promoter region. We identified ten nucleotide variations in the NPPS gene; five of the alterations caused amino-acid substitutions, and two of them were found specifically in OPLL patients. Subsequently, we performed an association study using these variations and found a significant association of an allele, viz., a deletion of T at a position 11 nucleotides upstream from the splice acceptor site of intron 20 (IVS20-11delT), with OPLL; the proportion of the individuals having this deletion was significantly higher (P = 0.0029) in OPLL patients than in controls, indicating that those who have this variation may be more susceptible to the abnormal ossification of the spinal ligaments. Thus, our study suggests that NPPS plays an important role in the etiology of human OPLL.
Research to date has identified several genes that are implicated in the etiology of ossification of the posterior longitudinal ligament of the spine (OPLL); however, their pathogenetic relevance remains obscure. The aim of this study is to identify susceptibility genes for OPLL through a large-scale case-control association study and to re-examine previously reported associations. A total of 109 single nucleotide polymorphisms (SNPs) in 35 candidate genes were genotyped for 711 sporadic OPLL patients and 896 controls. The differences in allelic and genotypic distribution between patients and controls were assessed using the chi (2) test with Bonferroni's correction. We also analyzed the association by separating patients into subgroups according to sex, age and the number of ossified vertebrae. The nominal P values fell below 0.05 for five SNPs in three genes. An intronic SNP in the TGF3 gene (P=0.00040) showed the most significant association. Previously reported associations of COL11A2, NPPS and TGFB1 with OPLL could not be reproduced. Further, no significant associations were detected in stratified analyses based on sex, age or the number of ossified vertebrae. TGFB3 warrants further investigation because it is located within a genomic region that has been positively linked with OPLL.
Endochondral ossification is an essential process not only for physiological skeletal development and growth, but also for pathological disorders. We recently identified a novel cartilage-specific molecule, carminerin (also known as cystatin 10 and encoded by Cst10), which is upregulated in synchrony with cartilage maturation and stimulates the later differentiation of cultured chondrocytes. Although carminerin-deficient (Cst10-/-) mice developed and grew normally, they had a microscopic decrease in the calcification of hypertrophic chondrocytes at the growth plate. When we created experimental models of pathological endochondral ossification, we observed suppression of chondrocyte calcification during formation of osteoarthritic osteophytes, age-related ectopic ossification and healing of bone fractures in Cst10-/- mice. Cultured Cst10-/- chondrocytes showed a reduction in calcification with activation of an SRY site in the promoter of the gene encoding nucleotide pyrophosphatase phosphodiesterase 1 (NPP1, encoded by Enpp1). Functional NPP1 is required for carminerin deficiency to suppress the pathological endochondral ossifications listed above. Carminerin is the first cartilage-specific protein that contributes to chondrocyte calcification during endochondral ossification under physiological and pathological conditions through the transcriptional inhibition of NPP1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.