Interfacial solar evaporation (ISE) is a promising technology to relieve worldwide freshwater shortages owing to its high energy conversion efficiency and environmentally sustainable potential. So far, many innovative materials and evaporators have been proposed and applied in ISE to enable highly controllable and efficient solar-to-thermal energy conversion. With rational design, solar evaporators can achieve excellent energy management for lowering energy loss, harvesting extra energy, and efficiently utilizing energy in the system to improve freshwater production. Beyond that, a strategy of reducing water vaporization enthalpy by introducing molecular engineering for water-state regulation has also been demonstrated as an effective approach to boost ISE. Based on these, this article discusses the energy nexus in two-dimensional (2D) and three-dimensional (3D) evaporators separately and reviews the strategies for design and fabrication of highly efficient ISE systems. The summarized work offers significant perspectives for guiding the future design of ISE systems with efficient energy management, which pave pathways for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.