BackgroundPancreatic neuroendocrine tumors (PNETs) are a group of rare tumors. Chromogranin A (CgA) was considered as the most practical and useful serum tumor marker in PNET patients. But peripheral blood levels of CgA are not routinely tested in Chinese patients with PNETs. This study was to assess the diagnostic value of CgA in Chinese patients with PNETs especially in patients with insulinomas.MethodsEighty-nine patients with PNETs including 57 insulinomas and 32 non-insulinoma PNETs as well as 86 healthy participants were enrolled in this study between September 2003 and June 2013. Serum levels of CgA were measured by ELISA method. Expression of CgA protein was detected in 26 PNET tissues including 14 insulinomas by immunohistochemical staining.ResultsSerum levels of CgA in 89 PNET patients were significantly higher than that in healthy controls (P = 7.2 × 10−9). Serum levels of CgA in 57 patients with insulinomas (median 64.8 ng/ml, range 25–164) were slightly higher than the levels in healthy controls (median 53.4 ng/ml, range 39–94) but much lower than the levels in 32 patients with non-insulinoma PNETs (median 193 ng/ml, range 27–9021), P = 0.001. The serum CgA levels were reduced in 16 of 17 patients with insulinomas after tumor resection. ROC curve showed that CgA values at 60 ng/ml distinguished patients with insulinomas from healthy controls but its sensitivity and specificity were 66.7% and 73.3%, respectively. In contrast, CgA values at 74 ng/ml distinguished patients with non-insulinoma PNETs from healthy controls, and the sensitivity and specificity were 65.6% and 91.9%, respectively. Except for two insulinomas with negative staining of CgA, 12 insulinoma tissues showed positive staining of CgA.ConclusionCgA is a reliable serum diagnostic biomarker for PNETs but not for insulinomas.
Self-healing materials should take effect immediately following crack generation in principle, but the speed of autonomic recovery of mechanical properties through either extrinsic or intrinsic healing strategy reported so far is not that fast. Mostly, a couple of hours are taken for reaching steady state or maximum healing. To accelerate the healing process, the authors of this work make use of antimony pentafluoride as instant hardener of epoxy and successfully encapsulate the highly active antimony pentafluoride-ethanol complex in terms of hollow silica spheres. Accordingly, self-healing agent based on microencapsulated antimony pentafluoride-ethanol complex and epoxy monomer is developed. Epoxy material with the embedded healant capsules can thus be healed within a few seconds, as demonstrated by impact and fatigue tests. It is believed that the outcome presented here might help to move the self-healing technique closer to practical application, especially when the engineering significance of epoxy material is concerned.
A strain sensor based on a silver nanowire/polyurethane composite film has successfully integrated high transparency, sensitivity, durability, sunlight self-healability and flexibility together.
Normal high-density lipoprotein (nHDL) in normal, healthy subjects is able to promote angiogenesis, but the mechanism remains incompletely understood. HDL from patients with coronary artery disease may undergo a variety of oxidative modifications, rendering it dysfunctional; whether the angiogenic effect is mitigated by such dysfunctional HDL (dHDL) is unknown. We hypothesized that dHDL compromises angiogenesis. The angiogenic effects of nHDL and dHDL were assessed using endothelial cell culture, endothelial sprouts from cardiac tissue from C57BL/6 mice, zebrafish model for vascular growth and a model of impaired vascular growth in hypercholesterolemic low-density lipoprotein receptor null(LDLr -/- )mice. MiRNA microarray and proteomic analyses were used to determine the mechanisms. Lipid hydroperoxides were greater in dHDL than in nHDL. While nHDL stimulated angiogenesis, dHDL attenuated these responses. Protein and miRNA profiles in endothelial cells differed between nHDL and dHDL treatments. Moreover, nHDL suppressed miR-24-3p expression to increase vinculin expression resulting in nitric oxide (NO) production, whereas dHDL delivered miR-24-3p to inhibit vinculin expression leading to superoxide anion (O 2 •- ) generation via scavenger receptor class B type 1. Vinculin was required for endothelial nitric oxide synthase (eNOS) expression and activation and modulated the PI3K/AKT/eNOS and ERK1/2 signaling pathways to regulate nHDL- and VEGF-induced angiogenesis. Vinculin overexpression or miR-24-3p inhibition reversed dHDL-impaired angiogenesis. The expressions of vinculin and eNOS and angiogenesis were decreased, but the expression of miR-24-3p and lipid hydroperoxides in HDL were increased in the ischemic lower limbs of hypercholesterolemic LDLr -/- mice. Overexpression of vinculin or miR-24-3p antagomir restored the impaired-angiogenesis in ischemic hypercholesterolemic LDLr -/- mice. Collectively, nHDL stimulated vinculin and eNOS expression to increase NO production by suppressing miR-24-3p to induce angiogenesis, whereas dHDL inhibited vinculin and eNOS expression to enhance O 2 •- generation by delivering miR-24-3p to impair angiogenesis, and that vinculin and miR-24-3p may be therapeutic targets for dHDL-impaired angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.