A class of fourth-order partial differential equations (PDEs) are proposed to optimize the trade-off between noise removal and edge preservation. The time evolution of these PDEs seeks to minimize a cost functional which is an increasing function of the absolute value of the Laplacian of the image intensity function. Since the Laplacian of an image at a pixel is zero if the image is planar in its neighborhood, these PDEs attempt to remove noise and preserve edges by approximating an observed image with a piecewise planar image. Piecewise planar images look more natural than step images which anisotropic diffusion (second order PDEs) uses to approximate an observed image. So the proposed PDEs are able to avoid the blocky effects widely seen in images processed by anisotropic diffusion, while achieving the degree of noise removal and edge preservation comparable to anisotropic diffusion. Although both approaches seem to be comparable in removing speckles in the observed images, speckles are more visible in images processed by the proposed PDEs, because piecewise planar images are less likely to mask speckles than step images and anisotropic diffusion tends to generate multiple false edges. Speckles can be easily removed by simple algorithms such as the one presented in this paper.
In this paper, we analyze the behavior of the anisotropic diffusion model of Perona and Malik (1990). The main idea is to express the anisotropic diffusion equation as coming from a certain optimization problem, so its behavior can be analyzed based on the shape of the corresponding energy surface. We show that anisotropic diffusion is the steepest descent method for solving an energy minimization problem. It is demonstrated that an anisotropic diffusion is well posed when there exists a unique global minimum for the energy functional and that the ill posedness of a certain anisotropic diffusion is caused by the fact that its energy functional has an infinite number of global minima that are dense in the image space. We give a sufficient condition for an anisotropic diffusion to be well posed and a sufficient and necessary condition for it to be ill posed due to the dense global minima. The mechanism of smoothing and edge enhancement of anisotropic diffusion is illustrated through a particular orthogonal decomposition of the diffusion operator into two parts: one that diffuses tangentially to the edges and therefore acts as an anisotropic smoothing operator, and the other that flows normally to the edges and thus acts as an enhancement operator.
The primary difficulty with blind image restoration, or joint blur identification and image restoration, is insufficient information. This calls for proper incorporation of a priori knowledge about the image and the point-spread function (PSF). A well-known space-adaptive regularization method for image restoration is extended to address this problem. This new method effectively utilizes, among others, the piecewise smoothness of both the image and the PSF. It attempts to minimize a cost function consisting of a restoration error measure and two regularization terms (one for the image and the other for the blur) subject to other hard constraints. A scale problem inherent to the cost function is identified, which, if not properly treated, may hinder the minimization/blind restoration process. Alternating minimization is proposed to solve this problem so that algorithmic efficiency as well as simplicity is significantly increased. Two implementations of alternating minimization based on steepest descent and conjugate gradient methods are presented. Good performance is observed with numerically and photographically blurred images, even though no stringent assumptions about the structure of the underlying blur operator is made.
In this paper we experiments with geometric algorithms for image smoothing. Examples are given for MRI and ATR data. The algorithms are based on the results in [2, 22, 25, 26, 291. Here we emphasize experiments with the affine invariant geometric smoother or affine heat equation, originally developed for binary shape smoothing, and found to be efficient for gray-level images as well. Efficient numerical implementations of these flows give anisotropic diffusion processes which preserve edges.
This paper presents anisotropic regularization techniques to exploit the piecewise smoothness of the image and the point spread function (PSF) in order to mitigate the severe lack of information encountered in blind restoration of shift-invariantly and shift-variantly blurred images. The new techniques, which are derived from anisotropic diffusion, adapt both the degree and direction of regularization to the spatial activities and orientations of the image and the PSF. This matches the piecewise smoothness of the image and the PSF which may be characterized by sharp transitions in magnitude and by the anisotropic nature of these transitions. For shift-variantly blurred images whose underlying PSFs may differ from one pixel to another, we parameterize the PSF and then apply the anisotropic regularization techniques. This is demonstrated for linear motion blur and out-of-focus blur. Alternating minimization is used to reduce the computational load and algorithmic complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.