A phosphorus-on-skeleton compound was synthesized by reacting phenyl dichlorophosphate (PDCP) with 2-hydroxyethyl methacrylate (HEMA). This monomer was then copolymerized with other acrylic monomers to form a hydroxy-containing copolymer, which was then used as the polyol in the synthesis of a polyurethane. Phosphorus-on-pendent copolymers and phosphorus-free copolymers and their corresponding polyurethanes were also prepared for comparison with the phosphorus-onskeleton material in terms of their flame-retardant properties. The flame retardancy and degradation mechanism of these copolymers and polyurethanes were analyzed with thermogravimetric analysis (TGA) and infrared spectroscopy. Although those phosphorus-on-skeleton copolymer polyols have less flame-retarding ability than that of the phosphorus-on-pendent copolymer polyol because of less phosphorus content, it was evident that the phosphorus-on-skeleton polyurethanes were more effective flame retardants than the phosphorus-on-pendent polyurethanes. This was attributed to the fact that the crosslinking arising from the phosphorus-on-skeleton copolymer polyols has a tremendous effect on the flame-retarding ability of the corresponding polyurethanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.