Homochiral Dy(III) complexes: by changing the ligand-to-metal ratio, enantiomeric pairs of a Dy(III) complex of different nuclearity could be obtained. The mono- and dinuclear complexes exhibit characteristics of single-molecule magnets and different slow magnetic relaxation processes. In addition, the dinuclear complexes exhibit ferroelectric behavior, thus representing the first chiral polynuclear lanthanide-based single-molecule magnets with ferroelectric properties.
Using the enantiomeric bis-bidentate bridging ligands (+)/(-)-2,5-bis(4,5-pinene-2-pyridyl)pyrazine (L(S)/L(R)) and depending on the ratio control of reactants, two mono- and dinuclear Eu(III)-based enantiomeric pairs with the formulae Eu(dbm)(3)L(R/S)·2H(2)O (L(R) in R-1, L(S) in S-1 and dbm = dibenzoylmethanato) and Eu(2)(dbm)(6)L(R/S)·H(2)O (L(R) in R-2 and L(S) in S-2) have been stereoselectively synthesized and structurally characterized. The circular dichroic (CD) spectra confirmed their chiroptical activities and enantiomeric natures. The homochiral dinuclear species represents the first example of a polynuclear lanthanide β-diketonate complexes with circular dichroic and crystallographic evidences. The photoluminescent properties studies revealed that both mono- and dinuclear Eu(iii) complexes exhibited the characteristic red emissions of Eu(III) ions in the solid state (at 77 K and 300 K) and CH(2)Cl(2) solution. Notably, the photophysical properties of the mononuclear enantiomers were superior to the dinuclear species. Interestingly, R-2 displayed a ferroelectric property at room temperature, which was not observed for R-1 due to the lack of crystalline polarity. R/S-2 are the first examples of homochiral polynuclear lanthanide complexes with luminescence and ferroelectric properties, being potential multifunctional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.