F-652 is a recombinant fusion protein consisting of two human interleukin-22 (IL-22) molecules linked to an immunoglobulin constant region (IgG-Fc). IL-22 plays critical roles in promoting tissue repair and suppressing bacterial infection. The safety, pharmacokinetics (PK), tolerability, and biomarkers of F-652 were evaluated following a single dose in healthy male volunteers in a randomized, double-blind, placebo-controlled study. Following single-dose subcutaneous (SC) injection of F-652 at 2.0 µg/kg into healthy subjects, six out of six subjects experienced delayed injection site reactions, which presented as erythematous and/or discoid eczematous lesions 10 to 17 days post-dosing. F-652 was then administered to the healthy subjects via an intravenous (IV) infusion at 2.0, 10, 30, and 45 µg/kg. No severe adverse event (SAE) was observed during the study. Among the IV-dosed cohorts, eye and skin treatment emergent adverse events (TEAEs) were observed in the 30 and 45 µg/kg cohorts. F-652 IV dosing resulted in linear increases in C and AUC, and the T ranged from 39.4 to 206 h in the cohorts. An IV injection of F-652 induced dose-dependent increases in serum marker serum amyloid A, C-reactive protein, and FIB, and decreased serum triglycerides. The serum levels of 36 common pro-inflammatory cytokines/chemokines were not altered by the treatment of F-652 at 45 μg/kg. In conclusion, IV administration of F-652 to healthy male volunteers is safe and well-tolerated and demonstrates favorable PK and pharmacodynamic properties. These results warrant further clinical development of F-652 to treat inflammatory diseases.
The fermentation kinetics of acetic acid production from fructose by Clostridium formicoaceticum was studied at pH 7.6 and 37 degreesC. Recycle batch, fed-batch, and continuous fermentations using immobilized cells in a fibrous-bed bioreactor were studied for their potential application in producing acetic acid from fructose, a fermentable sugar commonly found in corn steep liquor and many other food processing wastes. For the immobilized cell fermentation, acetic acid yield from fructose was approximately 1.0 g/g, with a final acetate concentration of approximately 78 g/L and the overall reactor productivity (based on the fibrous bed bioreactor volume) of approximately 0.95 g/(L.h) in the fed-batch fermentation. For a similar fed-batch fermentation with free cells, acetic acid yield was approximately 0.9 g/g, the highest final acetate concentration was approximately 46 g/L, and the overall productivity was approximately 0.12 g/(L.h). In the continuous fermentation with immobilized cells, the reactor productivity decreased from 3.2 to 1. 3 g/(L.h) as retention time increased from 16 to 72 h to reach 100% conversion. Compared to free-cell fermentations, the superior performance of the fibrous-bed bioreactor can be attributed to the high density (>30 g/L) of viable cells immobilized in the fibrous bed. The fermentation product, acetic acid, was found to be a noncompetitive inhibitor to the cells. However, the immobilized cells had a higher maximum production rate (pmax) and a higher value for the inhibition rate constant (Kp) than those for the free cells, suggesting that the immobilized cells in the fibrous-bed bioreactor were less sensitive to acetic acid inhibition than the free cells. This improvement in kinetic behaviors for immobilized cells confirms that the fibrous-bed bioreactor can be used as an effective tool for adapting and screening for acetate-tolerant strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.