The fully heat-treated DD6 single crystal turbine blades were treated in three ways: (1) surface grinding, without coating; (2) firstly surface grinding, then surface coated with HY3(NiCrAlY) anti-oxidation coating; (3) after surface grinding, coated surface with the bond layer of NiCrAlY and top layer of YSZ(Y2O3stabilize ZrO2) for the double-layer thermal barrier coatings. All these three experimental blades were treated with vacuum heat-treatment at 1120°C for 4h. The effects of coating on surface recrystallization of single-crystal blades have been investigated. The results indicate that: just with surface polishing blade generated a 6~9μm thick cellular recrystallization zone on the surface. The γ' presented coarse morphology and distributed discretely within cellular, and the γ' growth direction was perpendicular to the cellular interface; blade surface coated with anti-oxidation coating after polishing formed a 3~6μm thick cellular recrystallization zone in the matrix interface. But the grain boundary was fuzzy and recrystallization morphology was incomplete; the matrix interface morphology of blade coated with thermal barrier coatings after polishing changed insignificantly, but some local cellular recrystallization was found. The results indicate that the coating changes the cellular recrystallization morphology of the original matrix of the blade, which can effectively reduce the occurrence degree of recrystallization.
The directional solidification behavior of a first generation single crystal superalloy CMSX-6 was investigated. The solidification rate range in 25μm/s to 100μm/s and a thermal gradient G of 30K/cm were used for the present study. The experimental results show that the primary dendrite arm space (PDAS) decreased from (432±8) μm to (369±4) μm as the solidification rate increased, and the sizes of the eutectic pools also decreased as the solidification rate increased. And the volume fractions of eutectic γ/γ' were about 7% to 9% with different solidification rate. The γ/γ'- eutectic was comprised with coarse γ' phase and fine γ/γ' network. The morphology of the γ/γ’ eutectic supported the possibility that the solidification of γ/γ’ eutectic initiates with the formation of fine γ/γ’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.