In a six-year program started in July 2014, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A (z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼ 195, 000 new emission line galaxy redshifts, we expect BAO measurements of d A (z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A (z) and H(z), respectively. Finally, with 60,000 new quasars and reobservation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A (z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion (RSD) measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS. eBOSS 3 confidence, where w is the ratio of pressure to energy density for dark energy. Thus, current observations are generally consistent with the simplest picture where dark energy is described completely by Einstein's cosmological constant (Λ).New precise observations can unravel the origin of the accelerating universe; specifically, to determine if cosmic acceleration is caused by deviations in General Relativity (GR) on large scales or by a new form of (dark) energy. It is possible to decouple scenarios of acceleration that require dark energy from those that require modifications to GR by independently probing both cosmic expansion history and the structure growth rate. Four primary observational techniques are generally accepted as the most powerful toward obtaining that goal (e.g. Albrech...
We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.8σ. We determine the spherically averaged BAO distance to z = 1.52 to 3.8 per cent precision: D V (z = 1.52) = 3843 ± 147 (r d /r d,fid ) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat ΛCDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.6σ significance when testing a ΛCDM model with free curvature.
On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 ± 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 × 1.95 km) ±10%, respectively, and the direction of the +z axis is estimated to be (250 ± 5°, 63 ± 5°) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.
In this paper, a 3D convex shape model of (175706) 1996 FG3, which consists of 2040 triangle facets and 1022 vertices, is derived from the known lightcurves. The best-fit orientation of the asteroid's spin axis is determined to be λ = 237.7 • and β = −83.8 • considering the observation uncertainties, and its rotation period is ∼ 3.5935 h . Using the derived shape model, we adopt the so-called advanced thermophysical model (ATPM) to fit three published sets of mid-infrared observations of 1996 FG3 (Wolters et al. 2011;Walsh et al. 2012), so as to evaluate its surface properties. Assuming the primary and the secondary bear identical shape, albedo, thermal inertia and surface roughness, the best-fit parameters are obtained from the observations. The geometric albedo and effective diameter of the asteroid are reckoned to be p v = 0.045 ± 0.002, D eff = 1.69 +0.05 −0.02 km. The diameters of the primary and secondary are determined to be D 1 = 1.63 +0.04 −0.03 km and D 2 = 0.45 +0.04 −0.03 km, respectively. The surface thermal inertia Γ is derived to be a low value of 80 ± 40 Jm −2 s −0.5 K −1 with a roughness fraction f R of 0.8 +0.2 −0.4 . This indicates that the primary possibly has a regolith layer on its surface, which is likely to be covered by a mixture of dust, fragmentary rocky debris and sand. The minimum regolith depth is estimated to be 5 ∼ 20 mm from the simulations of subsurface temperature distribution, indicating that 1996 FG3 could be a very suitable target for a sample return mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.