Fathers of children with DDs should be monitored for parental stress and HRQOL, and interventions should be provided to empower them with the knowledge and skills to reduce their stress and to enhance their HRQOL.
This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are derived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone marrow transplant data in [1].
Spatial diffusion processes can be seen in many geographic phenomena that spread or migrate across space and over time. Studies of these processes were mostly done with verbal description until Hägerstrand (1966) started to approach it with quantitative models. A variety of attempts were made to continue this effort, but only with various degrees of success. Recognizing the critical role that distances between geographic objects or events play in a spatial diffusion process, we experimented with a new approach that uses these distances to detect and distinguish different types of spatial diffusion processes. Our approach is a two-step process that first calculates nearest neighbor ratios in a point process at each time step and then applies regression curve estimation to observe how these ratios change over time. We first report the results from applying this method to three spatio-temporal data sets which show the feasibility of our approach. We then report results of randomly simulated spatial diffusion processes to see if our approach is effective for the purpose of distinguishing different types of spatial diffusion processes. With only extreme cases as exceptions, our experiment found that using estimated regression curves of nearest neighbor ratios over time is usable in classifying spatial diffusion processes to either contagious/expansion or hierarchical/relocation diffusion processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.