Carbon nanomaterials, including herringbone graphite carbon nanofibers (GNFH), multiwalled carbon nanotubes (MWCNT), and carbon black, were surface-modified by a new poly(vinylpyrrolidone) (PVP) grafting process as well as by the conventional acid-oxidation (AO) process, and characterized by FTIR, TGA, Raman, HRTEM, XRD, and XPS measurements. Pt nanoparticles of 1.8 nm were evenly deposited on all PVP-grafted carbon nanomaterials. The effects of the two surface modification processes on the dispersion, average Pt nanoparticle sizes, the electrocatalytic performance, and electrical conductivities of Pt-carbon nanocomposites in direct methanol oxidation were systematically studied and compared. It was found that the PVP-grafted carbon nanomaterials have much less loss in the electric conductivity and thus better electrocatalytic performance, 17-463% higher, than their corresponding acid oxidation-treated nanocomposites. The electrocatalytic performance of the Pt-carbon nanocomposites decreases in the following order: Pt-PVP-GNFH > Pt-PVP-MWCNTarc > Pt-AO-MWCNTarc > Pt-PVP-MWCNTCVD > Pt-AO-MWCNTCVD > Pt-XC-72R > Pt-AO-GNFH, with the Pt-PVP-GNFH nanocomposite having approximately 270% higher performance than that of the Pt-Vulcan XC-72R nanocomposite. In addition, PtRu-PVP-GNFH shows even better (50% higher) electrocatalytic activity than the Pt-PVP-GNFH nanocomposite at a 0.6 V applied voltage.
Growing carbon nanotubes (CNTs) by arcing from graphite electrodes does not demand a noble gas atmosphere: water will do! CO and H2 bubbles generated by reaction of C vapor with water provide a quasi‐inert atmosphere in which multiwalled carbon nanotubes grow from the cathode. Using cobalt salt solutions instead of plain water, the authors obtained CNTs filled with metallic cobalt and elemental sulfur (see Figure), potentially useful as nanoprobes for magnetic force microscopy.
Novel composite carbon particles are developed that can self‐assemble as a coating on a substrate without a binder. These carbon particles were used as a coating to enhance thermal dissipation and their thermal conductivity, surface emissivity and cooling performance were measured. Carbon particles with both thiol and epoxy functional groups self‐assembled to form a coating on the surface of a heat sink without a binder, which greatly improved the thermal conductivity of the coating. Coating a heat sink with the carbon particles yielded a higher thermal conductivity and emissivity than could be obtained with the addition of binder in the conventional approach, and significantly enhanced the cooling performance. In addition, the cooling performance of the carbon nanotube outperformed all other particles when coated on a substrate, because it had the highest thermal conductivity and good radiation emissivity. We developed an equation to describe the various parameters affecting the cooling performance of the thermally dissipative coating. This equation was confirmed by the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.