The deregulated nonoxidative pentose phosphate pathway (PPP) is known to promote oncogenesis, but the molecular mechanism remains unknown. Here, we report that human ribose-5-phosphate isomerase A (RPIA) plays a role in human hepatocellular carcinoma (HCC). A significant increase in RPIA expression was detected both in tumor biopsies of HCC patients and in a liver cancer tissue array. Importantly, the clinicopathological analysis indicated that RPIA mRNA levels were highly correlated with clinical stage, grade, tumor size, types, invasion and alpha-fetoprotein levels in the HCC patients. In addition, we demonstrated that the ability of RPIA to regulate cell proliferation and colony formation in different liver cancer cell lines required ERK signaling as well as the negative modulation of PP2A activity and that the effects of RPIA could be modulated by the addition of either a PP2A inhibitor or activator. Furthermore, the xenograft studies in nude mice revealed that the modulation of RPIA in liver cancer cells regulated tumor growth and that NIH3T3 cells overexpressing RPIA exhibited increased proliferation, enhanced colony formation, elevated levels of p-ERK1/2 and accelerated tumor growth. This study provides new insight into the molecular mechanisms by which RPIA overexpression can induce oncogenesis in HCC. Furthermore, it suggests that RPIA can be a good prognosis biomarker and a potential target for HCC therapy.
Polyinosinic acid:polycytidylic acid, known as poly (I:C), is an analogue of double‑stranded RNA, which exhibits direct antitumor effects against several types of cancer. The present study aimed to evaluate the role of poly (I:C) in the apoptosis of cervical cancer cells. The HeLa human cervical cancer cell line was used in the present study, and cell apoptosis was determined following poly (I:C) transfection. Furthermore, the mRNA levels of interferon (IFN)‑β, the production of reactive oxygen species (ROS), DNA damage, mitochondrial membrane potential (∆Ψm) and the release of cytochrome c, as well as caspase activation, were determined. The effect of IFN‑β on poly (I:C) transfection‑mediated apoptosis was also examined by IFN‑β knockdown. The results showed that poly (I:C) transfection markedly induced HeLa apoptosis, increased the protein levels of pro‑apoptotic B cell lymphoma‑2 (Bcl‑2)‑associated X protein (Bax) and BH3 interacting‑domain death agonist (Bid), and suppressed the protein expression levels of anti‑apoptotic Bcl‑2 and Survivin. However, poly (I:C) transfection increased the mRNA levels of IFN‑β, induced ROS production and increased the levels of phosphorylated γH2A.X, an indicator of DNA damage. In addition, poly (I:C) transfection decreased ∆Ψm, triggered the release of cytochrome c from the mitochondria to the cytosol, and induced caspase‑9 and ‑3 activation. IFN‑β knockdown decreased the poly (I:C)‑induced production of ROS and DNA damage, restored ∆Ψm and cytochrome c release, and suppressed caspase‑9 and ‑3 activation, thereby suppressing poly (I:C)‑mediated apoptosis in the HeLa cells. Together, the results of the present study demonstrated that poly (I:C) transfection induced IFN‑β, contributing to ROS production, DNA damage, and caspase‑9 and ‑3 activation in the HeLa cervical cancer cell line, leading to mitochondrial‑mediated apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.