A gadolinium-doped multi-shell upconversion nanoparticle under 800 nm excitation is synthesized with a 10-fold fluorescence-intensity enhancement over that under 980 nm. The nanoformulations exhibit excellent photoacoustic/luminescence/magnetic resonance tri-modal imaging capabilities, enabling visualization of tumor morphology and microvessel distribution at a new imaging depth.
Upconversion nanocrystals (UCNCs) have recently been explored as optical imaging nanoprobes. However, conventional β-NaLuF4 (-) based UCNCs often suffer from large particle size and weak upconversion luminescence (UCL) intensity, leading to poor biocompatibility and low detection sensitivity. Here, a novel strategy for controlling the crystalline phase and size of UCNCs has been developed by doping of yttrium ions, resulting in particle size reduction and phase transition. The total UCL intensity of prepared core-shell UCNCs is significantly enhanced up to ≈4.9 and ≈17.4 times after Tm(3+) and Er(3+) doping than that of core UCNCs, offering deeper tissue UCL imaging with a depth of 8 mm in vivo. Moreover, the CT signal of core-shell UCNCs is ≈1.5 and ≈3.5 times brighter than that of core UCNCs and commercial ioversol agent because of increasing contents of Lu(3+) doped in UCNCs. The synthesized core-shell UCNCs hold a great promise in deep UCL and CT dual-modality imaging in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.