With the rapid development of location-based services in the field of mobile network applications, users enjoy the convenience of location-based services on one side, while being exposed to the risk of disclosure of privacy on the other side. Attacker will make a fierce attack based on the probability of inquiry, map data, point of interest (POI), and other supplementary information. The existing location privacy protection techniques seldom consider the supplementary information held by attackers and usually only generate single cloaking region according to the protected location point, and the query efficiency is relatively low. In this paper, we improve the existing LBSs system framework, in which we generate double cloaking regions by constraining the supplementary information, and then k-anonymous task is achieved by the cooperation of the double cloaking regions; specifically speaking, k dummy points of fixed dummy positions in the double cloaking regions are generated and the LBSs query is then performed. Finally, the effectiveness of the proposed method is verified by the experiments on real datasets.
This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method-using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.