Atomic layer deposition (ALD) of TiO2 thin films using Ti isopropoxide and tetrakis-dimethyl-amido titanium (TDMAT) as two kinds of Ti precursors and water as another reactant was investigated. TiO2 films with high purity can be grown in a self-limited ALD growth mode by using either Ti isopropoxide or TDMAT as Ti precursors. Different growth behaviors as a function of deposition temperature were observed. A typical growth rate curve-increased growth rate per cycle (GPC) with increasing temperatures was observed for the TiO2 film deposited by Ti isopropoxide and H2O, while surprisingly high GPC was observed at low temperatures for the TiO2 film deposited by TDMAT and H2O. An energetic model was proposed to explain the different growth behaviors with different precursors. Density functional theory (DFT) calculation was made. The GPC in the low temperature region is determined by the reaction energy barrier. From the experimental results and DFT calculation, we found that the intermediate product stability after the ligand exchange is determined by the desorption behavior, which has a huge effect on the width of the ALD process window.
Due to its high intrinsic mobility, germanium (Ge) is a promising candidate as a channel material (offering a mobility gain of approximately × 2 for electrons and × 4 for holes when compared to conventional Si channels). However, many issues still need to be addressed before Ge can be implemented in high-performance field-effect-transistor (FET) devices. One of the key issues is to provide a high-quality interfacial layer, which does not lead to substantial drive current degradation in both low equivalent oxide thickness and short channel regime. In recent years, a wide range of materials and processes have been investigated to obtain proper interfacial properties, including different methods for Ge surface passivation, various high-k dielectrics and metal gate materials and deposition methods, and different post-deposition annealing treatments. It is observed that each process step can significantly affect the overall metal-oxide-semiconductor (MOS)-FET device performance. In this review, we describe and compare combinations of the most commonly used Ge surface passivation methods (e.g. epi-Si passivation, surface oxidation and/or nitridation, and S-passivation) with various high-k dielectrics. In particular, plasma-based processes for surface passivation in combination with plasma-enhanced atomic layer deposition for high-k depositions are shown to result in high-quality MOS structures. To further improve properties, the gate stack can be annealed after deposition. The effects of annealing temperature and ambient on the electrical properties of the MOS structure are also discussed.
In recent years ferroelectric polymers
have attracted much attention due to their potentials in flexible
electronics. To satisfy the requirements of low operation voltage
and low power consumption, it is required to reduce the ferroelectric
film thickness down to, for example, 100 nm. However, decreased film
thickness results in low crystallinity and thus worse electrical performance.
One possible solution is to realize the epitaxial growth of ferroelectric
thin films via effective control of structure and orientation of ferroelectric
crystals. Here we report our work on poly(tetrafluoroethylene)-template-induced
ordered growth of ferroelectric thin films. We focus on the study
of thermal stability of ferroelectric phase in these ferroelectric
films. Our work indicates that epitaxial growth effectively increases
the crystallinity and the melting and ferroelectric phase transition
temperatures and implies the extended application of ferroelectric
devices at higher temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.