Phenamacril is a new broad-spectrum fungicide that is commonly used for the control of fungal diseases in wheat and rice. In this study, ultra-high-performance liquid chromatography-tandem mass spectrometry was used to establish a method for analyzing the residual phenamacril in flour and rice based on the improved QuEChERS (quick, easy, cheap, effective, rugged and safe) method using Z-Sep+ as the adsorbent in the pre-treatment process. The average recovery of phenamacril in flour and rice was 82.2-96.0%, the relative standard deviation was 2.1-5.6% and the limit of quantification was 0.5 μg/kg. The accuracy and sensitivity of this method meet the requirements for residue analysis. The method was applied to commercially available flour and rice samples, and the detected concentrations of phenamacril were 0.005-0.033 mg/kg. This method provides technical support for the safety evaluation of phenamacril.
The separation and purification of resveratrol in wine grape residue with aqueous two phase extraction method were studied in this paper. Used identified ethanol - ammonium sulfate - water as the aqueous two-phase system, the wine grape residue extract substances separated well. By TLC and HPLC analysis, resveratrol content (13.3μg/ml) in aqueous two-phase extraction was higher than the results (2.342μg/ml) in organic solvent extraction. The results showed that the aqueous two phase extraction method could be used in primary separation and purification of resveratrol in wine grape residue.
Kresoxim-methyl is a high-efficiency and broad-spectrum fungicide used for the control of rice fungal diseases; however, its residues after application potentially threaten human health. Investigations on the dissipation of kresoxim-methyl residue in rice field systems and dietary risk assessment of kresoxim-methyl in humans are limited. The present study employed the QuEChERS-GC-MS/MS method for residue analysis of kresoxim-methyl in rice plants, brown rice, and rice husks. The samples were extracted with acetonitrile and purified by PSA, C18 column, and GCB. The average recovery of the spiked target compounds in the three matrices was between 80.5% and 99.3%, and the RSD was between 2.1% and 7.1%. The accuracy and precision of the method is in accordance with the requirements of residue analysis methods. Dissipation dynamic testing of kresoxim-methyl in rice plants indicated a half-life within the range of 1.8–6.0 days, and a rapid dissipation rate was detected. Dietary intake risk assessment showed that the national estimated daily intake (NEDI) of kresoxim-methyl in various Chinese subpopulations was 0.022–0.054 μg/(kg bw·days), and the risk quotient (RQ) was 0.0000055–0.00014%. These findings indicate that the risk for chronic dietary intake of kresoxim-methyl in brown rice is relatively low. The present study provides information and theoretical basis for guiding the scientific use of kresoxim-methyl in rice fields and evaluating its dietary risk in brown rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.