In this paper, we report on the preparation of monodisperse polyaniline (PANi)–silica composite capsules and hollow spheres on monodisperse core–gel‐shell template particles. An extension of the previously reported inward growth method was used. The samples were self‐stabilized without external additives. The core–gel‐shell particles were prepared by the inward sulfonation of monodisperse polystyrene particles. The introduced sulfonic acid and sulfone groups are responsible for the gel properties. The gel‐shell thickness and core size were synchronously controlled over the whole particle radius range. After aniline (ANi) monomer was preferentially absorbed in the sulfonated polystyrene shell, PANi was formed by polymerization. PANi was doped in situ with a sulfonic acid group to give the capsules a high conductivity. PANi hollow spheres were derived after the polystyrene cores were dissolved: their cavity size and shell thickness were synchronously controlled by using different core–gel‐shell particles. The PANi–silica composite capsules and hollow spheres were therefore prepared by a sol–gel process using tetraethylorthosilicate in the conducting shell. The PANi shell became more robust while maintaining the same conductivity level. Morphological results indicate that the PANi and silica formed a bicontinuous network. Fourier‐transform infrared (FTIR) spectra revealed that the hydrogen bonding in the PANi–gel shell was enhanced after the silica phase was incorporated, which could explain the high conductivity level after the silica phase was added. In a converse procedure, silica capsules and hollow spheres were prepared by a sol–gel process that incorporated tetraethylorthosilicate into the core–gel‐shell templates, which was followed by the absorption and polymerization of aniline in the silica shell thus forming PANi–silica composite capsules and hollow spheres. The silica capsules and hollow spheres thereby became conductive.
In this work, a sensitive deep ultraviolet (DUV) light photodetector based on inorganic and lead-free Cs 3 Cu 2 I 5 crystalline film derived by a solution method was reported. Optoelectronic characterization revealed that the perovskite device exhibited nearly no sensitivity to visible illumination with wavelength of 405 nm but exhibited pronounced sensitivity to both DUV and UV light illumination with response speeds of 26.2/49.9 ms for rise/fall time. The I light /I dark ratio could reach 127. What is more, the responsivity and specific detectivity were calculated to be 64.9 mA W −1 and 6.9 × 10 11 Jones, respectively. In addition, the device could keep its photoresponsivity after storage in air environment for a month. It is also found that the capability of Cs 3 Cu 2 I 5 crystalline film device can readily record still DUV image with acceptable resolution. The above results confirm that the DUV photodetector may hold great potential for future DUV optoelectronic device and systems.
We demonstrate that supermolecular templating allows tuning the pore size of ordered mesoporous materials in the once elusive range from 30 nm to more than 60 nm through simple control of synthetic variables (salt/supermolecule concentration and hydrothermal temperature). Gold nanoparticles (AuNPs) within the extra-large pores exhibit dramatically increased lifetime compared to those located within relatively small mesopores due to the enhanced mass diffusion that suppresses coke deposition on AuNPs.
The effective site-selective interaction between the π-bonds in the aromatic rings of the polyaniline and the graphitic structure of multiwall carbon nanotubes would strongly facilitate the charge-transfer reaction between the two components. We adopted multiwall carbon nanotubes (MWNTs) with minimal defects as templates and facilely fabricated carbon nanotube−polyaniline nanocomposites with uniform core−shell structures by ultrasonic assisted in situ polymerization. By varying the ratio of aniline monomers and carbon nanotubes, the thickness of polyaniline layers can be effectively controlled. The results indicated that the presence of carbon nanotubes with minimized defects induced the formation of a more planar conformation of polyaniline even when a high weight percent of aniline was loaded. As a result, macroscopically, great improvements in the electrical and electrochemical properties of the resulting nanocomposites were observed.
A Materials Acceleration Operation System (MAOS) is designed, with unique language and compiler architecture. MAOS integrates with virtual reality (VR), collaborative robots, and a reinforcement learning (RL) scheme for autonomous materials synthesis, properties investigations, and self‐optimized quality assurance. After training through VR, MAOS can work independently for labor and intensively reduces the time cost. Under the RL framework, MAOS also inspires the improved nucleation theory, and feedback for the optimal strategy, which can satisfy the demand on both of the CdSe quantum dots (QDs) emission wavelength and size distribution quality. Moreover, it can work well for extensive coverages of inorganic nanomaterials. MAOS frees the experimental researchers out of the tedious labor as well as the extensive exploration of optimal reaction conditions. This work provides a walking example for the “On‐Demand” materials synthesis system, and demonstrates how artificial intelligence technology can reshape traditional materials science research in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.