study Objectives: Many patients with obstructive sleep apnea (OSA) have spontaneous periods of stable flow limited breathing during sleep without respiratory events or arousals. In addition, OSA is often more severe during REM than NREM and more severe during stage 2 than slow wave sleep (SWS). The physiological mechanisms for these observations are unknown. Thus we aimed to determine whether the activity of two upper airway dilator muscles (genioglossus and tensor palatini) or end-expiratory lung volume (EELV) differ between (1) spontaneously occurring stable and cyclical breathing and (2) different sleep stages in OSA. Design: Physiologic observation. setting: Sleep physiology laboratory. study Participants: 15 OSA patients with documented periods of spontaneous stable breathing. intervention: Subjects were instrumented with intramuscular electrodes for genioglossus and tensor palatini electromyograms (EMG GG and EMG TP ), chest and abdominal magnetometers (EELV measurement), an epiglottic pressure catheter (respiratory effort), and a mask and pneumotachograph (airflow/ventilation). Patients slept supine overnight without CPAP. Measurements and results:Peak and Tonic EMG GG were significantly lower during cyclical (85.4 ± 2.7 and 94.6 ± 4.7 % total activity) than stable breathing (109.4 ± 0.4 and 103 ± 0.8 % total activity, respectively). During respiratory events in REM, tonic EMG GG activity was lower than during respiratory events in stage 2 (71.9 ± 5.1 and 119.6 ± 5.6 % total activity). EMG GG did not differ between stable stage 2 and stable SWS (98.9 ± 3.2 versus 109.7 ± 4.4 % total activity), nor did EMG TP or EELV differ in any breathing condition/sleep stage. conclusions: Increased genioglossus muscle tone is associated with spontaneous periods of stable flow limited breathing in the OSA subjects studied. Reductions in genioglossus activity during REM may explain the higher severity of OSA in that stage. Increased lung volume and tensor palatini activity do not appear to be major mechanisms enabling spontaneous stable flow limited breathing periods. Keywords: Genioglossus, tensor palatini, respiratory events, REM sleep, slow wave sleep citation: Jordan AS; White DP; Lo YL; Wellman A; Eckert DJ; Yim-Yeh S; Eikermann M; Smith SA; Stevenson KE; Malhotra A. Airway dilator muscle activity and lung volume during stable breathing in obstructive sleep apnea. SLEEP 2009;32(3):361-368.
Background: Previous studies have shown that changes in lung volume influence upper airway size and resistance, particularly in patients with obstructive sleep apnoea (OSA), and that continuous positive airway pressure (CPAP) requirements decrease when the lung volume is increased. We sought to determine the effect of a constant lung volume increase on sleep disordered breathing during non-REM sleep. Methods: Twelve subjects with OSA were studied during non-REM sleep in a rigid head-out shell equipped with a positive/negative pressure attachment for manipulation of extrathoracic pressure. The increase in lung volume due to CPAP (at a therapeutic level) was determined with four magnetometer coils placed on the chest wall and abdomen. CPAP was then stopped and the subjects were studied for 1 hour in three conditions (in random order): (1) no treatment (baseline); (2) at ''CPAP lung volume'', with the increased lung volume being reproduced by negative extrathoracic pressure alone (lung volume 1, LV1); and (3) 500 ml above the CPAP lung volume(lung volume 2, LV2).
Background: Most patients with obstructive sleep apnoea (OSA) can restore airflow after an obstructive respiratory event without arousal at least some of the time. The mechanisms that enable this ventilatory recovery are unclear but probably include increased upper airway dilator muscle activity and/or changes in respiratory timing. The aims of this study were to compare the ability to recover ventilation and the mechanisms of compensation following a sudden reduction of continuous positive airway pressure (CPAP) in subjects with and without OSA. Methods: Ten obese patients with OSA (mean (SD) apnoea-hypopnoea index 62.6 (12.4) events/h) and 15 healthy non-obese non-snorers were instrumented with intramuscular genioglossus electrodes and a mask/ pneumotachograph which was connected to a modified CPAP device that could deliver either continuous positive or negative pressure. During stable non-rapid eye movement sleep the CPAP was repeatedly reduced 2-10 cm H 2 O below the level required to eliminate flow limitation and was held at this level for 5 min or until arousal from sleep occurred. Results: During reduced CPAP the increases in genioglossus activity (311.5 (49.4)% of baseline in subjects with OSA and 315.4 (76.2)% of baseline in non-snorers, p = 0.9) and duty cycle (123.8 (3.9)% of baseline in subjects with OSA and 118.2 (2.8)% of baseline in non-snorers, p = 0.4) were similar in both groups, yet patients with OSA could restore ventilation without cortical arousal less often than non-snorers (54.1% vs 65.7% of pressure drops, p = 0.04). When ventilatory recovery did not occur, genioglossus muscle and respiratory timing changes still occurred but these did not yield adequate pharyngeal patency/ventilation. Conclusions: Compensatory mechanisms (increased genioglossus muscle activity and/or duty cycle) often restore ventilation during sleep but may be less effective in obese patients with OSA than in non-snorers.
BackgroundAnnoying snore is the principle symptom and problem in obstructive sleep apnea syndrome (OSAS). However, investigation has been hampered by the complex snoring sound analyses.ObjectiveThis study was aimed to investigate the energy types of the full-night snoring sounds in patients with OSAS.Patients and MethodTwenty male OSAS patients underwent snoring sound recording throughout 6 hours of in-lab overnight polysomnogragphy. Snoring sounds were processed and analyzed by a new sound analytic program, named as Snore Map®. We transformed the 6-hour snoring sound power spectra into the energy spectrum and classified it as snore map type 1 (monosyllabic low-frequency snore), type 2 (duplex low-&mid-frequency snore), type 3 (duplex low- & high-frequency snore), and type 4 (triplex low-, mid-, & high-frequency snore). The interrator and test-retest reliabilities of snore map typing were assessed. The snore map types and their associations among demographic data, subjective snoring questionnaires, and polysomnographic parameters were explored.ResultsThe interrator reliability of snore map typing were almost perfect (κ = 0.87) and the test-retest reliability was high (r = 0.71). The snore map type was proportional to the body mass index (r = 0.63, P = 0.003) and neck circumference (r = 0.52, P = 0.018). Snore map types were unrelated to subjective snoring questionnaire scores (All P>0.05). After adjustment for body mass index and neck circumference, snore map type 3–4 was significantly associated with severity of OSAS (r = 0.52, P = 0.026).ConclusionsSnore map typing of a full-night energy spectrum is feasible and reliable. The presence of a higher snore map type is a warning sign of severe OSAS and indicated priority OSAS management. Future studies are warranted to evaluate whether snore map type can be used to discriminate OSAS from primary snoring and whether it is affected by OSAS management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.