A review of recent applications of Raman spectroscopy as a fast, sensitive, and non-destructive technique for exploring II–VI semiconductor nanocrystals fabricated by various methods (colloidal chemistry, Langmuir–Blodgett method, diffusion-limited growth) is presented. Specific size-related features revealed in the nanocrystal Raman spectra (phonon confinement, surface phonons) are analysed, as well as more complicated size effects for ultrasmall nanocrystals (NCs) related to the activation of the phonon density of states modified by surface reconstruction. Similarities and differences of the Raman scattering in II–VI and III–V or elemental (Si) semiconductor NCs are briefly analysed. Implementation of resonant conditions and application of infrared absorption analysis, complementary to the Raman spectroscopy—resulting in the observation of phonon modes ‘silent’ in conventional Raman scattering processes—are discussed. Furthermore, Raman spectroscopy is employed for fast and efficient assessment of the composition of matrix-embedded ternary II–VI nanocrystals, as well as more complicated multimode quaternary II–VI systems. Selective probing of electronic and vibrational spectra of different parts of heterogeneous NCs (such as core–shell systems) by tuning the excitation wavelength in resonant Raman scattering is considered. The analysis of phonon spectra is applied to the quantitative estimation of strain in the core and shell, and degree of interface intermixing, as well as to checking the surface oxidation. The above approaches and phenomena are further explored in more complex compound NCs beyond II–VI, such as CuInS2/ZnS. Recent results in the field of surface- and tip-enhanced Raman spectroscopy and surface-enhanced infrared absorption are analysed showing the perspectives of Raman spectroscopy as a tool for investigation of single-nanocrystal phonon spectra.
A mild aqueous synthesis of colloidal 2−4 nm (Cu, Ag)− In−S (CAIS) quantum dots (QDs) stabilized by surface metal complexes with glutathione was introduced. Linear variations of the interplanar distances as well as of the characteristic Ag(Cu)−S-related Raman vibrational frequencies of CAIS QDs with the increasing copper content show such QDs to be solid solutions rather than a mixture of AIS and CIS phases. At the same time, the band gaps and the energies of the photoluminescence (PL) band maxima of CAIS QDs show nonmonotonous changes decreasing from AIS to CAIS QDs (50 mol % Cu) and then increasing back for Cu-richer CAIS compositions and pure CIS. This behavior was interpreted as a result of the band bowing phenomenon. The bowing parameters of CAIS QDs determined from both absorption spectra (1.10 eV) and PL spectra (0.38 eV) are close to the range typically reported for ternary bulk M I −M III −S compounds with the M I sites occupied by a mixture of copper and silver cations. The PL intensity of CAIS QDs was found to decrease during PL registration due to the photochemical decomposition of QDs, and the efficiency of this process increases with the increasing copper content. A similar trend was found in the photocatalytic reduction of methylviologen cations by hydrosulfide anions in the presence of CAIS. The initial rate of this reaction increased monotonously from AIS to CAIS to CIS QDs, with the activity of the CAIS QDs (50 mol % Cu) and pure CIS QDs being, respectively, 1.5 and 2.7 times higher than the photoactivity of pure AIS QDs. This trend is compliant with a strong decrease in the PL emission efficiency observed from AIS to CAIS to CIS QDs. Similar optical and photochemical properties were revealed for core/shell CAIS/ZnS QDs. The band bowing effect and photochemical activity of mixed CAIS (CAIS/ZnS) QDs open good perspectives for light-conversion applications in the photon energy range down to 1.8 eV.
Resonant Raman scattering spectra of glass-embedded CdS 1−x Se x nanocrystals are measured and complemented with TEM and optical absorption as well as photoluminescence data. The selectivity of the resonant Raman process not only for the size, but also for the composition of nanocrystals within the ensemble, is directly observed in the dependence of phonon band frequency, linewidth and shape on the excitation wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.