Thermal conductivity factor and specific isobaric heat capacity of food products are currently the most important parameters in the development of mathematical models for food freezing and thawing and in improving production technology. There is significant variance among the existing experimental data for the thermal conductivity factor in meat. Most of the modern calculated relationships are based on the nutritional approach, which favorably differs by the ability to calculate the thermophysical characteristics of any food products. However, the calculation error at the subcryoscopic temperatures may be 15% to 20%. The development of superchilling as a way of storing meat requires high accuracy of freezing time calculation, including vacuumpacked boneless meat. In the presented article, the authors investigated hydrogen index, cryoscopic temperature, frozen moisture proportion and thermal conductivity factor for beef M. longissimus dorsi samples of NOR and DFD grades. It was found that DFD beef is characterized by 10% to 12% higher values of thermal conductivity factor in comparison with NOR grade. Using the method of regression analysis, the authors developed empirical relationships for calculating the thermal conductivity factor of meat depending on its temperature and pH level. Unlike cryoscopic temperature and frozen moisture proportion, pH is easy to measure and may be easily used on a conveyor belt for more accurate assessment of meat thermophysical properties. With an increase in pH from 5.3 to 7, an increase in cryoscopic temperature is observed from minus 0.94 °C to minus 0.72 °C. It has been shown that one of the factors for the higher cryoscopic temperature and higher pH level of DFD beef is higher water-holding capacity with less strongly bound moisture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.