Current antiepileptic strategies aim to normalize the interaction
of the excitatory and inhibitory systems, which is ineffective in
treating patients with drug-resistant epilepsy. Neuroinflammatory processes
in the epileptic focus and its perifocal area can trigger apoptosis
and also contribute to the development of drug resistance. The level
of pro- and anti-apoptotic proteins (p-NF-kB, TNF-α, p53, FAS, caspase-3,
caspase-9) was analyzed in intraoperative biopsies of the temporal
lobe gray and white matter in the brain of patients with drug-resistant
epilepsy. An increased level of pro-apoptotic proteins was revealed
in the cortex and perifocal area’s white matter against the background
of an imbalance of protective anti-apoptotic proteins. It appears
that the activation of the extrinsic pathway of apoptosis occurs
in the perifocal area, while in the epileptic focus, there are proteins
responsible for the activation of the anti-apoptotic survival pathways.
Active neuroinflammation in the epileptic focus and perifocal area
of the temporal lobe may contribute to the development of the resistance
to antiepileptic drugs and the progression of neurodegeneration in
such patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.