Background CD19-specific chimeric antigen receptor (CAR) T cell therapy has achieved high efficacy in acute lymphoblastic leukemia patients. However, the treatment of acute myeloid leukemia (AML) has remained a particular challenge due to the heterogeneity of AML bearing cells, which renders single antigen targeting CAR T cell therapy ineffective. CLL1 and CD33 are often used as targets for AML CAR T cell therapy. CLL1 is associated with leukemia stem cells and disease relapse, and CD33 is expressed on the bulk AML disease. Previously, we demonstrated the profound anti-tumor activity of CLL1-CD33 compound CAR (cCAR) T cells. Here we present the efficacy of cCAR in preclinical study and update the success in level 1 dose escalation clinical trial on relapsed/refractory AML patients. Methods We engineered a cCAR comprising of an anti-CLL1 CAR linked to an anti- CD33 CAR via a self-cleaving P2A peptide and expressing both functional CAR molecules on the surface of a T-cell cell. We tested the anti-leukemic activities of CLL1-CD33 cCAR using multiple AML cell lines, primary human AML samples, human leukemia cell line (REH cells) expressing either CLL1 or CD33, and multiple mouse models. An alemtuzumab safety switch has also been established to ensure the elimination of CAR T cells following tumor eradication. Children and adults with relapsed/refractory AML were enrolled in our phase 1 dose escalation trial with primary objective to evaluate the safety of cCAR and secondary objective to assess the efficacy of cCAR anti-tumor activity. Results Co-culture assays results showed that cCAR displayed profound tumor killing effects in AML cell lines, primary patient samples and multiple mouse model systems. Our preclinical findings suggest that cCAR, targeting two discrete AML antigens: CLL1 and CD33, is an effective two-pronged approach in treating bulk AML disease and eradicating leukemia stem cells. Patients enrolled in the phase 1 dose escalation trial have shown remarkable response to cCAR treatment. Noticeably, a 6-yr-old female patient diagnosed with a complex karyotype AML including FLT3-ITD mutation had achieved complete remission. The patient was diagnosed with Fanconi anemia, which had progressed to juvenile myelomonocytic leukemia and eventually transformed into AML. The patient had been resistant to multiple lines of treatments, including 5 cycles of chemotherapy with FLT3 inhibitor prior to receiving cCAR. Before the treatment, patient's leukemia blasts comprised 73% of the peripheral blood mononuclear cells and 81% of the bone marrow. Patient underwent lymphodepletion therapy (Fludarabine and Cyclophosphamide) prior to cCAR infusion. Two split doses, each consisting of 1x106/kg CAR T cells, were infused on day 1 and day 2 respectively. On day 12, while leukemia blast still counting up to 98% of the bone marrow (Fig. 1A), robust CAR T cell expansion was detected in both peripheral blood and bone marrow. On day 19, patient achieved MRD- complete remission with bone marrow aspirates revealing complete ablation of myeloid cells (Fig. 1B). Flow cytometry confirmed the absence of leukemia blasts and showed that CAR T cells comprised 36% of the PBMC and 60% of the bone marrow. The patient later underwent non-myeloablative hematopoietic cell transplantation with less toxicities compared to conventional total body radiation and high dose chemotherapies. Updated results on other patients enrolled in this clinical trial including adverse events will be presented. Conclusion Our first-in-human clinical trial demonstrates promising efficacy of cCAR therapy in treating patients with relapsed/ refractory AML. cCAR is able to eradicate leukemia blasts and leukemia stem cells, exerting a profound tumor killing effect that is superior to single target CAR T cell therapies. cCAR is also shown to induce total myeloid ablation in bone marrow, suggesting that it may act as a safer alternative to avoid the severe toxicities caused by standard bone marrow ablation regimens without sacrificing the anti-tumor efficacy. This strategy will likely benefit patients who are unable to tolerate total body radiation or high dose chemotherapies. In addition to AML, cCAR also has the potential to treat blast crisis developed from myelodysplastic syndrome, chronic myeloid leukemia, and chronic myeloproliferative neoplasm. Disclosures Pinz: iCell Gene Therapeutics LLC: Employment. Ma:iCAR Bio Therapeutics Ltd: Employment. Wada:iCell Gene Therapeutics LLC: Employment. Chen:iCell Gene Therapeutics LLC: Employment. Ma:iCell Gene Therapeutics LLC: Employment. Ma:iCell Gene Therapeutics LLC, iCAR Bio Therapeutics Ltd: Consultancy, Equity Ownership, Research Funding.
Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism.
The aim of the present study was to examine the effect of the traditional Chinese medicine Qili qiangxin on cardiomyocyte apoptosis following myocardial infarction (MI) in a rat model. MI was induced in rats by ligation of the anterior descending coronary artery. Survivors were randomly divided into the sham operation, MI, and Qili qiangxin groups (4 g/kg per day). After 28 days, infarction size was measured. In the non-infarcted zones (NIZ), the apoptotic index (AI) was measured by terminal deoxynucleotidyl transferase (TdT)-mediated digoxigenin-conjugated dUTP nick-end labeling (TUNEL). Expression of Fas was detected by immunohistochemistry, and the expression of xanthine oxidase (XO) and caspase-3 by western blot analysis. In addition, the XO and ·O2−, ·OH-scavenging activity of myocardial tissue in NIZ was measured by colorimetry. Compared to the MI group, AI and the expression of Fas and caspase-3 were significantly decreased in NIZ. The activity of XO was also considerably reduced while ·O2− and ·OH-scavenging activity was significantly increased in the Qili qiangxin group. Ventricular remodeling was attenuated but there were no significant differences in infarct size (IS) or XO expression levels between the Qili qiangxin and MI groups. In conclusion, the results suggest that Qili qiangxin may inhibit cardiomyocyte apoptosis in NIZ in rats. The potential mechanism involved may be associated with its ability to reduce reactive oxygen species (ROS) and to depress the expression of Fas and caspase-3.
Objective: Gait analysis helps to assess recovery during rehabilitation. Previous gait analysis studies are primarily applicable to healthy subjects or to postoperative patients. The purpose of this paper is to construct a new gait parameter estimation platform based on an ear-worn activity recognition (e-AR) sensor, which can be used for both normal and pathological gait signals. Approach: Thirty healthy adults and eight postoperative patients participated in the experiment. A method based on singular spectrum analysis (SSA) and iterative mean filtering (IMF) is proposed to detect gait events and estimate three key gait parameters, i.e. stride time, swing time, and stance time. Main results: Experimental results show that the estimated gait parameters provided by the proposed method are very close to the gait parameters provided by the gait assessment system. For normal gait signals, the average absolute errors of stride, swing, and stance time are 27.8 ms, 35.8 ms, and 37.5 ms, respectively. For pathological gait signals, the average absolute error of stride time is 32.1 ms. Significance: The proposed parameter estimation method can be applied to both general analysis for healthy subjects and rehabilitation evaluation for postoperative patients. The convenience and comfort of the ear-worn sensor increase its potential for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.