Herein, a new field-free and highly ordered spherical nucleic acid (SNA) nanostructure was self-assembled directly by ferrocene (Fc)-labeled DNA tweezers and DNA linkers based on the Watson−Crick base pairing rule, which was employed as an electrochemiluminescence (ECL) quenching switch with improved recognition efficiency due to the high local concentration of the ordered nanostructure. Moreover, with a collaborative strategy combined with the advantages of both selfaccelerated approach and pore confinement-enhanced ECL effect, the mesoporous silica nanospheres (mSiO 2 NSs) were prepared to be filled with rubrene (Rub) as ECL emitters and Pt nanoparticles (PtNPs) as coreaction accelerators (Rub-Pt@mSiO 2 NSs), which demonstrated high ECL response in the aqueous media (dissolved O 2 as coreactant). When the SNA nanostructure was immobilized on the Rub-Pt@mSiO 2 NSs-modified electrode, it presented a "signal off" state owing to the quenching effect of the Fc molecules. As a proof of concept, the SNA-based ECL switch platform was applied in the detection of microRNA let-7b (let-7b). Impressively, in the presence of the target let-7b, a deconstruction of the SNA nanostructure was actuated, causing the Fc to leave the electrode surface and achieved an extremely high ECL recovery ("signal on" state). Hence, a sensitive determination for let-7b was realized with a low detection limit of 1.8 aM ranging from 10 aM to 1 nM by employing the Rub-Pt@mSiO 2 NSs-based ECL platform combined with the target-triggered SNA deconstruction, which also offered an ingenious method for the further applications of biomarker analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.