Breast cancer cells frequently home to the bone marrow, where they may enter a dormant state before forming a bone metastasis. Several members of the interleukin-6 (IL-6) cytokine family are implicated in breast cancer bone colonization, but the role for the IL-6 cytokine leukemia inhibitory factor (LIF) in this process is unknown. We tested the hypothesis that LIF provides a pro-dormancy signal to breast cancer cells in the bone. In breast cancer patients, LIF receptor (LIFR) levels are lower with bone metastases and are significantly and inversely correlated with patient outcome and hypoxia gene activity. Hypoxia also reduces the LIFR:STAT3:SOCS3 signaling pathway in breast cancer cells. Loss of the LIFR or STAT3 enables otherwise dormant breast cancer cells to down-regulate dormancy, quiescence, and cancer stem cell-associated genes, and to proliferate in and specifically colonize the bone, suggesting LIFR:STAT3 signaling confers a dormancy phenotype in breast cancer cells disseminated to bone.
Dysregulation of the von Hippel-Lindau/hypoxia-inducible transcription factor (HIF) signaling pathway promotes clear cell renal cell carcinoma (ccRCC) progression and metastasis. The protein kinase GAS6/AXL signaling pathway has recently been implicated as an essential mediator of metastasis and receptor tyrosine kinase crosstalk in cancer. Here we establish a molecular link between HIF stabilization and induction of AXL receptor expression in metastatic ccRCC. We found that HIF-1 and HIF-2 directly activate the expression of AXL by binding to the hypoxia-response element in the AXL proximal promoter. Importantly, genetic and therapeutic inactivation of AXL signaling in metastatic ccRCC cells reversed the invasive and metastatic phenotype in vivo. Furthermore, we define a pathway by which GAS6/AXL signaling uses lateral activation of the met proto-oncogene (MET) through SRC proto-oncogene nonreceptor tyrosine kinase to maximize cellular invasion. Clinically, AXL expression in primary tumors of ccRCC patients correlates with aggressive tumor behavior and patient lethality. These findings provide an alternative model for SRC and MET activation by growth arrest-specific 6 in ccRCC and identify AXL as a therapeutic target driving the aggressive phenotype in renal clear cell carcinoma.targeted therapy | kidney cancer | VHL | hepatocellular carcinoma K idney cancer is a leading cause of cancer-related deaths in the United States. Metastasis to distant organs including the lung, bone, liver, and brain is the primary cause of death in kidney cancer patients, as only 12% of patients with metastatic kidney cancer will survive past 5 y, in comparison with 92% of patients with a localized disease (1). Because kidney cancer is chemo-and radiation-resistant, targeted therapies are needed for the prevention and management of metastatic kidney cancer.The von Hippel-Lindau (VHL)-hypoxia-inducible transcription factor (HIF) pathway is a critical regulator of clear cell renal cell carcinoma (ccRCC) tumor initiation and metastasis. VHL is a classic tumor suppressor controlling tumor initiation in ∼90% of ccRCC tumors (2, 3). VHL is the substrate recognition component of an E3 ubiquitin ligase complex containing the elongins B and C (4, 5), Cullin-2 (6), and Rbx1 (7) that targets the hydroxylated, oxygen-sensitive α-subunits of HIFs (HIF-1, -2, and -3) for ubiquitination and degradation by the 26S proteasome (8, 9). Thus, the primary function ascribed to VHL is the regulation of HIF protein stability. In VHL-deficient tumors, HIF transcriptional activity is constitutively active and contributes to both ccRCC tumor initiation and metastasis (8-11). Although many downstream HIF targets controlling ccRCC tumor initiation have been defined, key targets involved in ccRCC metastasis remain to be identified.AXL, a member of the TAM family of receptor tyrosine kinases (RTKs), has recently been described as an essential mediator of cancer metastasis. Additionally, AXL has been reported to mediate RTK crosstalk and resistance to targeted kina...
MYB (the human ortholog of c- myb ) is expressed in a high proportion of human breast tumors, and that expression correlates strongly with estrogen receptor (ER) positivity. This may reflect the fact that MYB is a target of estrogen/ER signaling. Because in many cases MYB expression appears to be regulated by transcriptional attenuation or pausing in the first intron, we first investigated whether this mechanism was involved in estrogen/ER modulation of MYB . We found that this was the case and that estrogen acted directly to relieve attenuation due to sequences within the first intron, specifically, a region potentially capable of forming a stem–loop structure in the transcript and an adjacent poly(dT) tract. Secondly, given the involvement of MYB in hematopoietic and colon tumors, we also asked whether MYB was required for the proliferation of breast cancer cells. We found that proliferation of ER + but not ER − breast cancer cell lines was inhibited when MYB expression was suppressed by using either antisense oligonucleotides or RNA interference. Our results show that MYB is an effector of estrogen/ER signaling and provide demonstration of a functional role of MYB in breast cancer.
Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl ‘decoy receptor’ that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high affinity Axl variant caused structural alterations in side chains across the Gas6/Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc-fusion, the engineered decoy receptor bound to Gas6 with femtomolar affinity, an 80-fold improvement compared to the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Moreover, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.