SUMMARY
The cuticular wax layer on leaf surfaces limits non‐stomatal water loss to the atmosphere and protects against pathogen invasion. Although many genes associated with wax biosynthesis and wax transport in plants have been identified, their regulatory mechanisms remain largely unknown. Here, we show that the MYB transcription factor OsMYB60 positively regulates cuticular wax biosynthesis and this helps rice (Oryza sativa) plants tolerate drought stress. Compared with the wild type (japonica cultivar ‘Dongjin’), osmyb60 null mutants (osmyb60‐1 and osmyb60‐2) exhibited increased drought sensitivity, with more chlorophyll leaching and higher rates of water loss. Quantitative reverse‐transcription PCR showed that the loss of function of OsMYB60 led to downregulation of wax biosynthesis genes, leading to reduced amounts of total wax components on leaf surfaces under normal conditions. Yeast one‐hybrid, luciferase transient transcriptional activity, and chromatin immunoprecipitation assays revealed that OsMYB60 directly binds to the promoter of OsCER1 (a key gene involved in very‐long‐chain alkane biosynthesis) and upregulates its expression. Taken together, these results demonstrate that OsMYB60 enhances rice resilience to drought stress by promoting cuticular wax biosynthesis on leaf surfaces.
Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liprostatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells. BMB Rep. www.bmbreports.org Particulate matter increases ferroptosis Minkyung Park, et al.
The vegetative-to-reproductive transition requires the complex, coordinated activities of many transcriptional regulators. Rice (Oryza sativa), a facultative short-day (SD) plant, flowers early under SD (≤10 h light/day) and late under long-day (LD; ≥14 h light/day) conditions. Here, we demonstrate that rice LATE FLOWERING SEMI-DWARF (LFS) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor that promotes flowering under non-inductive LD conditions. LFS showed diurnal expression peaking at dawn, and transcript levels increased gradually until heading. Mutation of LFS delayed flowering under LD but not SD conditions. Expression of the LD-specific floral repressor gene LEAFY COTYLEDON2 AND FUSCA3-LIKE 1 (OsLFL1) was upregulated in lfs knockout mutants, and LFS bound directly to the GCC-rich motif in the OsLFL1 promoter, repressing OsLFL1 expression. This suggests that increased LFS activity during vegetative growth gradually attenuates OsLFL1 activity. Subsequent increases in Early heading date 1, Heading date 3a, and RICE FLOWERING LOCUS T 1 expression result in flowering under noninductive LD conditions. LFS did not affect the expression of other OsLFL1 regulators, including OsMADS50, OsMADS56, VERNALIZATION INSENSITIVE3-LIKE 2, and GERMINATION DEFECTIVE 1, or interact with them. Our results demonstrate the novel roles of LFS in inducing flowering under natural LD conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.