A theoretical simulation study of the dispersion characteristic of the surface acoustic wave (Rayleigh wave) was conducted by modeling the adhesion interlayer with stiffness coefficients to evaluate the bonding properties of nano-scale thin film structures. For experimental validation, a set of thin film specimens were fabricated—637 nm, 628 nm, 637 nm, 600 nm, and 600 nm thick titanium (Ti) films were deposited on silicon (Si) (100) substrate using a DC Magnetron sputtering process with DC power from 28.8 W, 57.6 W, 86.4 W, 115.2 W, and 144 W. The thicknesses of the Ti films were measured using a scanning electron microscope (SEM). Surface acoustic wave velocity for each of the manufactured thin film specimens was measured by using a V(z) curve technique of a Scanning Acoustic Microscope. The measured velocity, transducer frequency, and thickness of the film were applied to dispersion characteristic simulation for a given stiffness coefficient to calculate adhesion strength of each specimen. To verify the simulation result, the adhesion force of each specimen was measured using a nano-scratch test and then compared with the calculated values from the dispersion characteristic simulation. The value of adhesion strength from the dispersion characteristic simulation and the value of adhesion force of the nano-scratch test were found to have a similar tendency according to the process variable of the thin film. The results demonstrated that the adhesion strength of a thin film could be evaluated quantitatively by calculating the dispersion characteristics with the adhesion interlayer stiffness model.
In this study, a reliability evaluation of the phased array ultrasonic testing (PAUT) method was performed to examine the applicability of the method for tube weld specimens with flaws having the same specifications as the tubes in the boilers of thermal power plant facilities. To this end, test specimens were fabricated by inserting flaws into tube welds with identical materials and specifications to those used in the thermal power plant. PAUT data acquisition was obtained using a round robin test (RRT) on the fabricated specimen, and the data were compared with the results of radiographic testing (RT) for a comparative evaluation of the flaw detection performance. In addition, for quantitative reliability analysis, the flaw detection performance (probability of detection; POD) and the error in the sizing accuracy (root-mean-square error; RMSE) were calculated with different materials of the specimens (carbon steel, stainless steel, dissimilar metal) and flaw types (volumetric, planar). In the analysis results, for high-risk planar defects, the PAUT technique exhibited superior flaw detection performance to the RT technique. A POD analysis of the PAUT technique indicated that flaws of 6.9 mm length were detected at 80% probability for total tube specimens. Furthermore, a reliability analysis was performed for test specimens of different materials and flaw types, and the results were derived. Through the findings of this study, the applicable range of the PAUT technique was examined, and a technical basis for PAUT in lieu of RT was established.
Composite materials have attracted significant attention with regard to the manufacturing of structures that require weight reduction, such as automobiles and aircraft, because they are more resistant to corrosion and fatigue than conventional metal materials. However, such materials exhibit a reliability degradation problem, i.e., their mechanical and physical properties deteriorate due to the occurrence of delamination and voids. Ultrasonic inspection methods have been widely applied for nondestructive detection of such defects in structures; however, the application of these approaches has been impeded due to high anisotropy and acoustic attenuation. In addition, the existing ultrasonic inspection methods require considerable time and cost for the inspection of large materials or structures. These problems were addressed in this study by developing an automatic ultrasonic inspection system; this was achieved by adopting a squirter-type water injection device, which uses a multi-joint robot and the through-transmission ultrasonic method. In addition, a software program to correct axis misalignment was developed and verified to solve the deterioration in defect detectability and accuracy that was caused by axis misalignment, which may occur during the use of the developed system. This development was accomplished after measuring the coordinates of the deformed mechanical part using a three-dimensional laser measuring instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.