The micro grid system requires battery for energy storage and power management. In which, the bi-directional DC to DC converter is the key component for maintaining the DC bus voltage and controlling the charge and discharge of the battery with or without grid support. Parallel control of multiple DC to DC converters is a critical technique to enlarge the power capacity. This paper presents two capacity limitation control methods that multiple DC to DC converters can be paralleled with distributed battery banks. The first method is the capacity limitation control with cascaded load current sense needing no control interconnection. The second method is the capacity limitation control with master-slave and cascaded current command limitation. Two methods are presented to solve the limitation of droop control method and active current sharing method respectively, and can be extended without converter number limitation theoretically. Three prototype 240W bidirectional half-bridge DC to DC converters are built and paralleled in this paper. The proposed method is confirmed with some measured results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.