Background Altered microbiome composition and aberrant promoter hypermethylation of tumor suppressor genes (TSGs) are two important hallmarks of colorectal cancer (CRC). Here we performed concurrent 16S rRNA gene sequencing and methyl-CpG binding domain-based capture sequencing in 33 tissue biopsies (5 normal colonic mucosa tissues, 4 pairs of adenoma and adenoma-adjacent tissues, and 10 pairs of CRC and CRC-adjacent tissues) to identify significant associations between TSG promoter hypermethylation and CRC-associated bacteria, followed by functional validation of the methylation-associated bacteria. Results Fusobacterium nucleatum and Hungatella hathewayi were identified as the top two methylation-regulating bacteria. Targeted analysis on bona fide TSGs revealed that H. hathewayi and Streptococcus spp . significantly correlated with CDX2 and MLH1 promoter hypermethylation, respectively. Mechanistic validation with cell-line and animal models revealed that F. nucleatum and H. hathewayi upregulated DNA methyltransferase. H. hathewayi inoculation also promoted colonic epithelial cell proliferation in germ-free and conventional mice. Conclusion Our integrative analysis revealed previously unknown epigenetic regulation of TSGs in host cells through inducing DNA methyltransferase by F. nucleatum and H. hathewayi , and established the latter as CRC-promoting bacteria.
Urothelial carcinoma (UC) carcinogenesis has been hypothesized to occur through epigenetic repression of tumor-suppressor genes (TSGs). By quantitative real-time polymerase chain reaction array, we found that one potential TSG, angiopoietin-like 4 (ANGPTL4), was expressed at very low levels in all bladder cancer cell lines we examined. Previous studies had demonstrated that ANGPTL4 is highly expressed in some cancers, but downregulated, by DNA methylation, in others. Consequently, owing to these seemingly conflicting functions in distinct cancers, the precise role of ANGPTL4 in the etiology of UC remains unclear. In this study, using methylation-specific PCR and bisulfite pyrosequencing, we show that ANGPTL4 is transcriptionally repressed by DNA methylation in UC cell lines and primary tumor samples, as compared with adjacent noncancerous bladder epithelium. Functional studies further demonstrated that ectopic expression of ANGPTL4 potently suppressed UC cell proliferation, monolayer colony formation in vitro, and invasion, migration, and xenograft formation in vivo. Surprisingly, circulating ANGPTL4 was significantly higher in plasma samples from UC patients than normal control, suggesting it might be secreted from other cell types. Interestingly, our data also indicated that exogenous cANGPTL4 could promote cell proliferation and cell migration via activation of signaling through the Erk/focal adhesion kinase axis. We further confirmed that mouse xenograft tumor growth could be promoted by administration of exogenous cANGPTL4. Finally, immunohistochemistry demonstrated that ANGPTL4 was downregulated in tumor cells but overexpressed in tumor adjacent stromal tissues of muscle-invasive UC tissue samples. In conclusion, our data support dual roles for ANGPTL4 in UC progression, either as a tumor suppressor or oncogene, in response to microenvironmental context.
MicroRNAs (miRNAs) have been shown to play a crucial role in the progression of human cancers, including urothelial carcinoma (UC), the sixth-most common cancer in the world. Among them, miR-34a has been implicated in the regulation of cancer stem cells (CSCs); however, its role in UC has yet to be fully elucidated. In this study, bioinformatics and experimental analysis confirmed that miR-34a targets CD44 (a CSC surface marker) and c-Myc (a well-known cell cycle regulator) in UC. We found that, surprisingly, most UC cell lines and patient samples did express miR-34a, although epigenetic silencing by promoter hypermethylation of miR-34a expression was observed only in UMUC3 cells, and a subset of patient samples. Importantly, overexpression of c-Myc, a frequently amplified oncogene in UC, was shown to upregulate CD44 expression through a competing endogenous RNA (ceRNA) mechanism, such that overexpression of the c-Myc 3′UTR upregulated CD44, and vice versa. Importantly, we observed a positive correlation between the expression of c-Myc and CD44 in clinical samples obtained from UC patients. Moreover, overexpression of a dominant-negative p53 mutant downregulated miR-34a, but upregulated c-Myc and CD44, in UC cell lines. Functionally, the ectopic expression of miR-34a was shown to significantly suppress CD44 expression, and subsequently, suppression of cell growth and invasion capability, while also reducing chemoresistance. In conclusion, it appears that aberrant promoter methylation, and c-Myc-mediated ceRNA mechanisms, may attenuate the function of miR-34a, in UC. The tumor suppressive role of miR-34a in controlling CSC phenotypes in UC deserves further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.