We show that a magnetic strip on top of a superconducting strip magnetized in a specified direction may considerably enhance the critical current in the sample. At fixed magnetization of the magnet we observed diode effect -the value of the critical current depends on the direction of the transport current. We explain these effects by a influence of the nonuniform magnetic field induced by the magnet on the current distribution in the superconducting strip. The experiment on a hybrid Nb/Co structure confirmed the predicted variation of the critical current with a changing value of magnetization and direction of the transport current.
A comprehensive investigation and comparison of the superconducting properties of bilayer and multilayer epitaxial heterostructures of IV–VI semiconductors exhibiting superconductivity at critical temperatures Tc⩽6.5K is carried out. The superconductivity of these systems is due to inversion of the bands in the narrow-gap semiconductors on account of the nonuniform stresses created by the grids of misfit dislocations arising at the interfaces during the epitaxial growth. It is found that Tc and the character of the superconducting transition of bilayer PbTe∕PbS heterostructures depend on the thickness d of the semiconductor layers and are directly related to the quality of the grids of misfit dislocations at the interfaces (the number and type of structural defects in the grids). Substantial differences in the behavior of bilayer sandwiches and superlattices are found. The minimum thickness d at which superconductivity appears is several times larger for bilayer than for multilayer systems. The upper critical magnetic fields Hc2 of the bilayer systems are more anisotropic. For superlattices 3D behavior is observed in the temperature region close to Tc, and with decreasing temperature a 3D–2D crossover occurs. For the bilayer structures 2D behavior starts immediately from Tc, and a 2D–1D crossover is observed, with the sharp divergence of Hc2 that is characteristic of superconducting nets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.