Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator (GMA). Therefore, in the present study we intend to investigate the influences of the system damping coefficient, system stiffness coefficient, disc spring cubic stiffness factor, and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA. In this regard, the nonlinear piezomagnetic equation, Jiles–Atherton hysteresis model, quadratic domain rotation model, and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA. Moreover, the multi-scale method and the singularity theory are used to determine the co-dimensional two-bifurcation characteristics of the system. Then, the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed. Finally, the fourth-order Runge–Kutta method is used to obtain the time domain waveform, phase portrait and Poincaré mapping diagrams of the system. Subsequently, the obtained three graphs are analyzed. The obtained results show that when the system output is stable, the variation range of each parameter can be determined. Moreover, the stability interval of system damping coefficient, system stiffness coefficient, and the coefficient of the cubic stiffness term of the disc spring are obtained. Furthermore, the stability interval of the exciting force and the excitation frequency are determined.
In the present study, the chaotic response of the nonlinear magnetostrictive actuator (GMA) vibration system is investigated. e mathematical model of the nonlinear GMA vibration system is established according to J-A hysteresis nonlinear model, quadratic domain rotation model, Newton's third law, and principle of GMA structural dynamics by analyzing the working principle of GMA. en, the Melnikov function method is applied to the threshold condition of the chaotic response of the system to obtain the sense of Smale horseshoe transformation. Furthermore, the mathematical model is solved to investigate the system response to the excitation force and frequency. Accordingly, the corresponding displacement waveform, phase plane trajectory, Poincaré map, and amplitude spectrum are obtained. e experimental simulation is verified using Adams software. e obtained results show that the vibration equation of the nonlinear GMA vibration system has nonlinear and complex motion characteristics with different motion patterns. It is found that the vibration characteristics of the system can be controlled through adjusting the excitation force and frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.