SmB6, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely the Kondo hybridization gap. Seeing as the Kondo gap arises from many body electronic correlations, this would place SmB6 at the head of a new material class: topological Kondo insulators. Here, for the first time, we show that the k-space characteristics of the Kondo hybridization process is the key to unravelling the origin of the two types of metallic states experimentally observed by ARPES in the electronic band structure of SmB6(001). One group of these states is essentially of bulk origin, and cuts the Fermi level due to the position of the chemical potential 20 meV above the lowest lying 5d-4f hybridization zone. The other metallic state is more enigmatic, being weak in intensity, but represents a good candidate for a topological surface state. However, before this claim can be substantiated by an unequivocal measurement of its massless dispersion relation, our data raises the bar in terms of the ARPES resolution required, as we show there to be a strong renormalization of the hybridization gaps by a factor 2-3 compared to theory, following from the knowledge of the true position of the chemical potential and a careful comparison with the predictions from recent LDA+Gutzwiller calculations. All in all, these key pieces of evidence act as triangulation markers, providing a detailed description of the electronic landscape in SmB6, pointing the way for future, ultrahigh resolution ARPES experiments to achieve a direct measurement of the Dirac cones in the first topological Kondo insulator. * e.frantzeskakis@uva.nl † m.s.golden@uva.nl
SnSe, a "simple" and "old" binary compound composed of earth-abundant elements, has been reported to exhibit a high thermoelectric performance in single crystals, which stimulated recent interest in its polycrystalline counterparts. This work investigated the electrical and thermal transport properties of pristine and Na-doped SnSe1-xTex polycrystals prepared by mechanical alloying and spark plasma sintering. It is revealed that SnSe1-xTex solid solutions are formed when x ranges from 0 to 0.2. An energy barrier scattering mechanism is suitable for understanding the electrical conducting behaviour observed in the present SnSe polycrystalline materials, which may be associated with abundant defects at grain boundaries. The thermal conductivity was greatly reduced upon Te substitution due to alloy scattering of phonons as well explained by the Debye model. Due to the increased carrier concentration by Na-doping, thermoelectric figure of merit (ZT) was enhanced in the whole temperature range with a maximum value of 0.72 obtained at a relatively low temperature (773 K) for Sn0.99Na0.01Se0.84Te0.16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.